JOSÉ EDUARDO FERREIRA DA COSTA GARDOLINSKI

COMPOSTOS DE INTERCALAÇÃO DERIVADOS DA CAULINITA

Dissertação apresentada ao Programa Interdisciplinar de Pós-Graduação em Engenharia da Universidade Federal do Paraná, como parte dos requisitos para a obtenção do grau de Mestre em Engenharia – Área de concentração: Engenharia e Ciência de Materiais.

Orientador: Prof. Dr. Fernando Wypych

CURITIBA
2001
COMPOSTOS DE INTERCALAÇÃO DERIVADOS DA CAULINITA

Dissertação apresentada ao Programa Interdisciplinar de Pós-Graduação em Engenharia da Universidade Federal do Paraná, como parte dos requisitos para a obtenção do grau de Mestre em Engenharia – Área de concentração: Engenharia e Ciência de Materiais.

Orientador: Prof. Dr. Fernando Wypych

CURITIBA
2001
Gardolinski, José Eduardo Ferreira da Costa.
xvi, 185 p. : il., graf., tabs.
Orientador: Fernando Wypych.

Termo livre: Compostos de intercalação
CDD 20 620.118
RELATÓRIO DE DEFESA DE MESTRADO

A Banca Examinadora, atendendo determinação do Colegiado do Programa Interdisciplinar de Pós-Graduação em Engenharia, ficou constituída pelos Professores Doutores João Barros Valim (Depto. De Química da USP), Maurício Pereira Cantão (LACTEC), Aldo José Gorgatti Zarbin (Depto. De Química-UFPR, Fernando Wypych (Depto. Química).

Às 13:30 horas, a banca iniciou os trabalhos, convidando o(a) Candidato(a) José Eduardo Ferreira da Costa a fazer a apresentação da dissertação intitulada “Compostos de Intercalação derivados da Caulinita”. Encerrada a apresentação, iniciou-se a fase de arguição pelos membros participantes.

Tendo em vista a dissertação e a arguição, a banca atribuiu as seguintes notas: Prof. Dr. João Barros Valim, Nota: A, Prof. Dr. Maurício Pereira Cantão, Nota: A, Prof. Dr. Aldo José Gorgatti Zarbin, Nota: A, Prof. Dr. Fernando Wypych A média obtida: A, resulta na aprovação do candidato, (de acordo com a determinação dos Artigos 61,62,63,64 da Resolução 38/96 de 14.06.96), e corresponde ao conceito A/B/C/D.

Curitiba, 17 de agosto de 2001.

Prof. Dr. João Barros Valim
Prof. Dr. Maurício Pereira Cantão
Prof. Dr. Aldo José Gorgatti Zarbin

EM TEMPO: O NOME COMPLETO DO ALUNO É: JOSE EDUARDO FERREIRA DA COSTA CARMOLINHAS
Elizete Pires
Secretária Administrativa
Prog. Inter. de Pós-Grad. em Engenharia
À todos aqueles, que por algum motivo, não tiveram a oportunidade de chegar até aqui, e dar mais este pequeno passo.
AGRADECIMENTOS

Mesmo que aparentemente este trabalho possa parecer relativamente direto e objetivo, muito tivemos que batalhar e superar para chegar à este resultado final que aqui se apresenta. Nesta caminhada, muitos foram aqueles cuja contribuição foi indispensável para o prosseguimento da pesquisa, e muitos mais aqueles que de uma maneira menos intensiva, colaboraram para que tudo tivesse o melhor andamento possível. Nestas poucas linhas gostaria de deixar meu mais sincero agradecimento a todos que participaram desta minha conquista. No entanto, sei que acabarei sendo injusto com alguns, que também mereceriam seu nomes aqui, mas como este espaço é exíguo, peço minhas desculpas por deixar apenas seus nomes de fora, já que meus agradecimentos e sinceras lembranças não lhes escapam!

Ao meu Orientador, Professor Dr. Fernando Wypych, que foi também o primeiro, nesta Universidade, a me oferecer uma oportunidade séria e bem guiada de iniciação científica, abrindo meus horizontes para o mundo da pesquisa. Pelas bolsas que me pagou, com o dinheiro de seus tão suados projetos com a Petrobrás, e algumas vezes até com dinheiro do próprio bolso. Pela porta sempre aberta a críticas e sugestões. Pela vontade incansável de pesquisar coisas novas e investir horas de seu tempo – já tão tomado– com elucubrações sobre os resultados de minhas sínteses malucas. Por ter acreditado e depositado sua confiança em mim. E por tanto mais, a você, Fernando, devo no mínimo 80% do pesquisador que me julgo hoje, portanto, estas poucas linhas são indignas da gratidão que lhe devo.

Ao colega de graduação, de mestrado e acima de tudo, ao amigo José Luís Guimarães, pelos muitos ensinamentos práticos que me passou nestes anos de convívio, por sua incansável vontade de melhorar e de expor os problemas que nos cercavam, por seu grande exemplo de vida e perseverança que deu a todos que o conseguiram e por todas as ótimas horas de convívio que tivemos. Valeu Guima!

Aqueles Professores do DQ aqui da UFPR, que nestes anos todos me apoiaram nas mais diversas situações e não se intimidaram frente
à minha vontade de seguir sempre em frente, principalmente aos Doutores(as) Joaquim Delphino da Motta Neto, Harley Paiva Martins Filho, Maria Aparecida Biaison Gomes, Nádia Krieger, Aldo José Gorgati Zarbin e Luiz Pereira Ramos. Uma lembrança especial também para o ex-Professor da UFPR Dr. Carlos César Stadler, assim como para o Professor -agora do Dep. de Tecnologia Química- Dr. Alvaro Luiz Mathias.

Ao Professor Dr. Wido Herwing Schreiner (DF-UFPR), pelas muitas sugestões e críticas, pelo eterno interesse em ensinar e mostrar o caminho, pelo seu entusiasmo e pela sua amizade.

Ao Químico Osnildo Kosel (LACTEC), meu ex-orientador do estágio na Copel, por todo o ensinamento prático que me passou, pela paciência e compreensão com este inquieto estagiário e pelas inúmeras análises de Absorção Atômica que realizou para nós.

Ao Professor Dr. Maurício Pereira Cantão (LACTEC) pelas fundamentais (mesmo que algumas vezes conturbadas) aulas de Ciência e Engenharia de Materiais do PIPE, pela sua inestimável colaboração com as análises de microscopia eletrônica de varredura que realizou (e ajudou a interpretar) para nós, e pela sua imensa colaboração com correções e sugestões enquanto na banca do exame de qualificação.

Ao Professor Dr. Patrício Peralta-Zamorra (DQ-UFPR), pelas inúmeras colaborações durante os trabalhos de pesquisa e pela sua também imensa colaboração durante a banca do exame de qualificação.

Aos professores Drs. Irineu Mazzaro e César Cusatis (DF-UFPR), por possibilitarem o livre e irrestrito acesso a seu laboratório de difração de raios-X, sem o qual este trabalho seria impensável desde o início. Também ao técnico do laboratório, o Físico Elias C. M. Sobrinho, por todo o tempo dedicado a nossas amostras.

Ao Prof. Dr. Ney Matoso Filho (DF-UFPR), pelas contribuições enquanto professor de Microscopia e também com sua ajuda com o microscópio eletrônico de transmissão.

Ao técnico do Laboratório de Química Analítica Quantitativa (DQ-UFPR) o Geógrafo Rogério Millani, pelo companheirismo, ajuda e inúmeras horas de papo-furado.

Aos Professores Drs. João Barros Valim (IQ-USP/RP), Aldo J. G. Zarbin (DQ-UFPR) e Maurício P. Cantão (LACTEC), por aceitarem
participar da minha banca da defesa, e por suas sugestões, críticas, comentários e elogios a tudo o que viram, leram e ouviram, sem as quais eu jamais traria este trabalho até o ponto em que se encontra.

Aos colegas do Laboratório de Química do Estado Sólido, Giselle Bubniak e Rafael Marangoni, por todo o trabalho conjunto e pela grande colaboração com as análises de FTIR.

À todos os meus colegas de graduação e mestrandos, que ajudaram a seguir meu caminho, sempre apontando os deslizes e os méritos, e sempre prontos para tirar dúvidas ou fazer trabalhos nas horas e dias mais improváveis, especialmente ao Celso, Armando, Luciana Adad, Carlos Gouvêa, e Edemir.

Às meus amigos todos, que além do apoio irrestrito, compreenderam que alguns finais de semana eu simplesmente tinha que ficar em casa, lendo, escrevendo e escrevendo! E que dispensam outros agradecimentos, pois um amigo é sempre um amigo, e qualquer coisa que se diga sobre a amizade, é sempre pouco.

À Helen, pelo seu companheirismo, amizade e Amor. Pela sua ajuda e compreensão, com ombro sempre presente nas horas difíceis. Pela amizade e por todo tempo maravilhoso que passamos juntos.

E finalmente, mas em primeiro lugar... aos meus PAIS, que nunca faltaram com o apoio que precisei, sempre aceitaram meus planos (mesmo que não gostassem muito), me deram tudo o que tinham e podiam, para que eu superasse qualquer obstáculo e chegasse onde eu quisesse. A vocês, devo toda minha vida até hoje (e todos os dias ainda por vir) e assim, o mínimo que posso fazer é dedicar o resto dela em agradecimentos. Tudo o que tentarei conquistar ainda, será sempre em gratidão a vocês...

À todos vocês, assim como a todos os que também mereceriam seus nomes aqui,

meu mais sincero,

MUITO OBRIGADO!
SUMÁRIO

LISTA DE FIGURAS ... ix
LISTA DE TABELAS ... xii
LISTA DE SIGLAS E ABRÉVIATURAS .. xiii
RESUMO ... xiv

ABSTRACT .. xv

1 INTRODUÇÃO ... 1

1.1 Compostos Lamelares, de Intercalação e Nanocompósitos 1

1.2 Argilas e Argilominerais .. 14

1.3 Intercalação em Argilominerais Lamelares 28

2 OBJETIVOS E MOTIVAÇÕES ... 33

3 MATERIAIS E MÉTODOS .. 36

3.1 Síntese dos compostos de intercalação 36

3.1.1 Síntese dos compostos de intercalação precursors 36

3.1.1.1 Síntese do composto Caulinita/DMSO 36

3.1.1.2 Síntese do composto Caulinita/CH₃COOK 37

3.1.2 Síntese dos compostos de intercalação secundários 38

3.1.2.1 Síntese do composto Caulinita/NMP 38

3.1.2.2 Síntese do composto Caulinita/Benzamida 39

3.1.2.3 Síntese do composto Caulinita/PEO 39

3.1.2.4 Síntese do composto Caulinita/PHB 40

3.1.2.5 Síntese do composto Caulinita/Metanol 41

3.1.2.6 Síntese do composto Caulinita/Água (Caulinita Hidratada) ... 41

3.1.2.7 Síntese do composto Caulinita/Anilina 42

3.1.2.8 Tentativas de síntese do composto Caulinita/PANI 43

3.1.3 Outras tentativas de síntese .. 45

3.2 Métodos de Caracterização ... 47

3.2.1 Difractometria de Raios-X - Método do Pó 47

3.2.2 Análise Térmica ... 50

3.2.2.1 Termogravimetria – TG .. 52
3.2.2.2 Calorimetria Diferencial de Varredura - DSC 53
3.2.3 Espectroscopia de absorção no Infravermelho 54
3.2.4 Microscopia Eletrônica de Varredura 55
4 RESULTADOS E DISCUSSÕES 56
 4.1 Intercalação de DMSO e de CH₃COOK 56
 4.2 Intercalação de NMF 76
 4.3 Intercalação de Benzanida 84
 4.4 Intercalação de PEO e de PHB 97
 4.5 Intercalação de Metanol e de Água (Caulinita
 Hidratada) .. 114
 4.6 Intercalação de Anilina e de PANI 123
 4.7 Tentativas de outras intercalações 133
 4.8 Comparações entre os compostos obtidos e discussões
 finais .. 134
5 PERSPECTIVAS FUTURAS 137
6 CONCLUSÕES ... 140
REFERÊNCIAS .. 151
ANEXOS: Artigos publicados referentes aos trabalhos da
dissertação ... 162
LISTA DE FIGURAS

FIGURA 1.1 - Modelo da estrutura lamelar do grafite, mostrando a geometria do retículo e a representação por esferas...3

FIGURA 1.2 - Ilustrações esquemáticas de nanocompósitos polímero orgânico/composto lamelar..............12

FIGURA 1.3 - Esquema da formação das folhas tetraédricas e octaédricas a partir de suas unidades básicas...18

FIGURA 1.4 - Diagrama esquemático da estrutura da caulinita...18

FIGURA 1.5 - Diagrama esquemático da estrutura da muscovita..19

FIGURA 1.6 - Diagrama ilustrativo dos campos de estudo e de emprego das argilas e dos argilominerais.....20

FIGURA 1.7 - Micrografia de uma amostra de caulinita da região do rio Capim, na bacia Amazônica (PP-0559)...25

FIGURA 1.8 - Micrografia de uma amostra de caulinita da região do rio Capim, na bacia Amazônica (PP-0559)...26

FIGURA 1.9 - Modelo estrutural da caulinita, diferenciando os quatro tipos de hidroxilas presentes, de acordo com sua geometria...27

FIGURA 3.1 - Estrutura do DMSO...37

FIGURA 3.2 - Estrutura do Acetato de Potássio.................................38

FIGURA 3.3 - Estrutura da NMP...38

FIGURA 3.4 - Estrutura da Benzamida..39

FIGURA 3.5 - Estrutura de um trecho da molécula polimérica de PEO...40

FIGURA 3.6 - Estrutura da unidade básica de repetição (monômero) da molécula de PHB......................40
FIGURA 3.7 - Estrutura da Anilina
FIGURA 4.1 - Difractogramas de raios-X da caulinita, K-DMSO e K-Acetato
FIGURA 4.2 - Curvas de análise térmica da caulinita
FIGURA 4.3 - Curvas de análise térmica do K-DMSO
FIGURA 4.4 - Curvas de análise térmica do K-Acetato
FIGURA 4.5 - Espectros de FTIR da caulinita pura e dos compostos K-DMSO e K-Acetato na região entre 3800 cm\(^{-1}\) e 2800 cm\(^{-1}\)
FIGURA 4.6 - Espectros de FTIR da caulinita pura e dos compostos K-DMSO e K-Acetato na região entre 1800 cm\(^{-1}\) e 400 cm\(^{-1}\)
FIGURA 4.7 - Micrografia do composto K-DMSO
FIGURA 4.8 - Difractogramas de raios-X da caulinita, K-DMSO e K-NMP
FIGURA 4.9 - Curvas de análise térmica do K-NMP
FIGURA 4.10 - Espectros de FTIR da caulinita, NMP e K-NMP, na região entre 4000 cm\(^{-1}\) e 2700 cm\(^{-1}\)
FIGURA 4.11 - Difractogramas de raios-X da benzanida, caulinita, K-DMSO e K-Bz
FIGURA 4.12 - Curvas de análise térmica do K-Bz
FIGURA 4.13 - Espectros de FTIR da caulinita, K-Bz e benzanida, na região entre 3800 cm\(^{-1}\) e 3000 cm\(^{-1}\)
FIGURA 4.14 - Espectros de FTIR da caulinita, K-Bz e benzanida, na região entre 1750 cm\(^{-1}\) e 1350 cm\(^{-1}\)
FIGURA 4.15 - Difractogramas de raios-X da caulinita pura e dos compostos K-DMSO, K-PEO e K-PHB
FIGURA 4.16 - Curvas de análise térmica do PEO e do composto K-PEO
FIGURA 4.17 - Curvas de análise térmica do PHB e do composto K-PHB

X
FIGURA 4.18 - Espectros de FTIR da caulinita pura do PEO e do composto K-PEO, na região entre 4000 cm\(^{-1}\) e 400 cm\(^{-1}\)...106

FIGURA 4.19 - Espectros de FTIR da caulinita pura do PHB e do composto K-PHB, na região entre 4000 cm\(^{-1}\) e 400 cm\(^{-1}\)...107

FIGURA 4.20 - Micrografia do composto K-PHB..109

FIGURA 4.21 - Micrografia do composto K-PHB..110

FIGURA 4.22 - Micrografia do composto K-PHB..110

FIGURA 4.23 - Micrografia do composto K-PHB..112

FIGURA 4.24 - Difrato gramas de raios-X da caulinita pura, K-DMSO, K-Água e K-Hidr..115

FIGURA 4.25 - Curvas de análise térmica do K-Hidr.................................118

FIGURA 4.26 - Espectros de FTIR da caulinita pura e dos compostos K-DMSO e K-Hidr, na região entre 3800 cm\(^{-1}\) e 3060 cm\(^{-1}\)...120

FIGURA 4.27 - Espectros de FTIR da caulinita pura e dos compostos K-DMSO e K-Hidr, na região entre 2070 cm\(^{-1}\) e 400 cm\(^{-1}\)...121

FIGURA 4.28 - Difrato gramas de raios-X da caulinita pura e dos compostos K-Hidr, K-Anil, K-PANI e K-PANI seco a 60\(^\circ\)C por 24h.................................123

FIGURA 4.29 - Curvas de análise térmica dos compostos K-Anil e K-PANI...127

FIGURA 4.30 - Espectros de FTIR da caulinita pura e dos compostos K-Anil, K-PANI e K-PANI’, na região entre 4000 cm\(^{-1}\) e 400 cm\(^{-1}\)...131
LISTA DE TABELAS

TABELA 1.1 - Classificação dos argilominerais..................16
TABELA 4.1 - Índices de Intercalação, distâncias e expansões interplanares basais da caulinita, K-DMSO e K-Acetato..58
TABELA 4.2 - Bandas observadas no espectro de FTIR da caulinita pura e suas atribuições...............69
TABELA 4.3 - Bandas observadas no espectro de FTIR do composto K-NMP e suas atribuições.................82
TABELA 4.4 - Bandas observadas no espectro de FTIR do composto K-Bz e suas atribuições..................95
TABELA 4.5 - Distâncias interplanares basais, expansões interplanares basais e índices de intercalação das fases K-PEO e K-PHB.................................98
TABELA 4.6 - Distâncias interplanares basais, expansões interplanares basais e índices de intercalação das fases K-Água e K-Hidr.........................116
TABELA 4.7 - Resumo dos dados obtidos para os diversos compostos sintetizados..........................134
4.6 - Intercalação de Anilina e de PANI

O produto da intercalação da anilina na caulinita hidratada (K-Anil) foi obtido como um pó amarelado, e o produto de sua polimerização (K-PANI), como um pó compacto, verde muito escuro, quase negro. A figura 4.28 mostra os difratogramas de raios-X para estas duas fases, assim como para seus precursores K-Hidr e caulinita pura e para a fase K-PANI após aquecimento a 60°C por 24h.

![Difractogram of X-rays for pure caulinite (a), K-Hidr (b), K-Anil (c), K-Pani (d) and K-PANI after heating at 60°C for 24h (e).]

FIGURA 4.28: Difractogramas de raios-X da caulinita pura (a), da fase K-Hidr (b), do composto K-Anil (c) do composto K-Pani (d) e do composto K-PANI após aquecimento a 60°C por 24h (e).
LISTA DE SIGILAS E ABREVIATURAS

Anil - anilina
Bz - benzamida
d - distância interplanar basal
DMSO - dimetilsulfóxido
DSC - calorimetria diferencial de varredura
 (Differential Scanning Calorimetry)
EPR - espectroscopia de ressonância paramagnética
 Eletrônica (Electron Paramagnetic Ressonance)
FTIR - espectroscopia de absorção no infravermelho com
 tratamento de transformada de Fourier (Fourier
 Transform Infrared Spectroscopy)
Hidr - hidratada
II - índice aparente de intercalação
K - caulinita
MS - espectrometria de massa (Mass Spectrometry)
NMF - N-metil-formamida
NMP - N-metil-2-pirrolidona
PANI - polianilina
PEO - poli(óxido de etileno)
PHB - poli(β-hidroxitirurato)
PXRD - difração de raios-X - método do pó (Powder X-Ray
 Difratometry)
RMN - espectroscopia de ressonância magnética nuclear
MEV - microscopia eletrônica de varredura
TA - análise térmica
TG - termogravimetria
Δd - expansão interplanar basal
RESUMO

O presente trabalho relata a síntese e caracterização de dez compostos de intercalação derivados da caulinita. Inicialmente foram sintetizados dois compostos primários, intercalados com DMSO e CH₃COOK e três secundários, intercalados com Metanol e Água (1 nm e 0,8 nm), com as técnicas já descritas na literatura e então, utilizando estes compostos, obteve-se com sucesso cinco novos compostos secundários, intercalados com NMP, Benzenida, PEO, PHB e Anilina. Outras tentativas de síntese foram realizadas, porém, sem o mesmo êxito. Todos os compostos obtidos foram, quando possível, caracterizados por meio de Difracción de Raios-X de Pó (PXRD), Análise Térmica (TG/DSC) e de Espectroscopia de Absorção no Infravermelho (FTIR), além de algumas caracterizações morfológicas por Microscopia Eletrônica de Varredura (MEV). Dos resultados das análises verificou-se que os compostos possuíram as seguintes estequiometrias, calculadas quando possível, e com uma barra de erro de 5%: K(DMSO)₀,₄₀, K(H₂O)₀,₃₇, K(NMP)₀,₃₉, K(Bz)₀,₃₂, K(PEO)₃,₂₄, K(PHB)₀,₆₀ e K(CH₃NH₂)₀,₁₅, e que os compostos secundários obtidos estavam todos livres dos intercalantes precursores. O fato dos valores de índices de intercalação destes compostos nunca ultrapassarem os 85% foi atribuído à eventual presença de sílica amorfa cimentando a borda de alguns cristalitos. Apesar da intercalação bem sucedida da anilina na caulinita, as tentativas de obtenção do seu polímero intercalado, não tiveram êxito. Análises estruturais mais detalhadas (incluindo Espectroscopia Raman e Ressonância Nuclear Magnética no Estado Sólido) e modelagens computacionais dos processos de intercalação e das estruturas dos nanocompósitos obtidos ainda são necessárias para um entendimento mais aprofundado das interações entre a matriz da caulinita e seus intercalantes, assim como do arranjo tridimensional destas estruturas. A pesquisa em modificação química de superfícies de argilominerais é bastante ampla, oferecendo muitas abordagens experimentais diferentes, sempre com a possibilidade de obtenção de novos compostos, alguns deles, com propriedades interessantes em muitos campos diferentes de aplicação. Apesar disso, este ainda é um campo relativamente inexplorado, pois ainda visualiza-se muito para ser pesquisado e explicado, o que foi um dos fatores primordiais que motivou este trabalho.

Palavras-chave: Caulinita; Compostos de Intercalação; Compostos Lamelares; Nanocompósitos; Argilominerais; Química de Materiais.
ABSTRACT

The present work presents the synthesis and characterization of ten intercalation compounds derived from Kaolinite. Two primary compounds, intercalated with DMSO and CH₃COOK, and three secondary ones, intercalated with Methanol and Water (1 nm and 0,8 nm), were initially synthesized with the already described procedures from the literature. Then using these compounds, five new ones, intercalated with NMP, Benzamide, PEO, PHB and Aniline, were prepared. Other syntheses were attempted, but none proved to be successful. All the prepared compounds were characterized, whenever possible, by Powder X-Ray Diffractometry (PXRD), Thermal Analysis (TG/DSC) and Infrared Absorption Spectrometry (FTIR), besides some morphological characterizations by Scanning Electron Microscopy (SEM). From the analysis results the following stoichiometries were obtained: K(DMSO)₀,₄₀, K(H₂O)₀,₈₃, K(NMP)₀,₃₉, K(Bz)₀,₃₂, K(PEO)₀,₃₄, K(PHB)₀,₆₀ and K(C₆H₅NH₂)₀,₁₅, all within a 5% error. All the secondary compounds analyzed were free from their former intercalants. The fact that the intercalation indexes were always inferior to 85% was attributed to the presence of small amounts of amorphous silica cementing the borders of some kaolinite crystals. Despite the successful aniline intercalation, all the attempts to obtain its intercalated polymer were unsuccessful. More precisely detailed structural analysis (including Raman Spectroscopy and Solid State-Nuclear Magnetic Resonance) and computational modeling of the intercalation processes and of the nanocomposites structures are still necessary, in order to gain more profound understanding of the interactions between the kaolinite matrix and its intercalants, as well as from the tri-dimensional arrangements of these structures. The research field in chemical modification of clay minerals surfaces is very broad, offering many different experimental approaches, always with the possibility of obtainment of new compounds, some of those with interesting properties in many different application fields. Despite these possibilities, this is still a relatively unexplored area, for there is much left to be researched and explained, being this one of the major motivations of the present work.

KEY WORDS: Kaolinite; Intercalation Compounds; Lamellar Compounds; Nanocomposites; Clay Minerals, Materials Chemistry.
“Os Químicos constituem uma estranha classe de mortais, impelidos por um impulso docentio de procurar satisfação inconstante no meio de fumaças e vapores, de fuligem e chamas, de venenos e misérias; mas, no meio desse inferno, tenho vivido tão agradavelmente que prefiro morrer a trocar meu lugar com o Rei da Pérsia!”
- Johann Joachim Becher -
1635 – 1682
1 - INTRODUÇÃO

1.1 - Compostos Lamelares, de Intercalação e Nanocompósitos

Todo o presente trabalho se fundamenta nas propriedades, características e particularidades de compostos lamelares. Várias definições podem ser encontradas para tal classe de compostos, talvez, a melhor delas seja a que se baseia na descrição de sua estrutura, pois é ela que caracteriza estes materiais. Os compostos lamelares fazem parte de uma classe de compostos usualmente referidos como compostos de baixa dimensionalidade estrutural. Este termo refere-se ao arranjo estrutural do material. Em um material cristalino de alta dimensionalidade sua célula unitária é repetida indefinidamente nas três direções, a fim de formar um cristal da substância. Já num composto de baixa dimensionalidade, sua célula unitária pode não ser repetida indefinidamente em uma ou mais direções, obtendo-se assim, cristais com estruturas lamelares, fibrosas ou outras.

Na união de um grande número de monocristais desses materiais, é que se obtém o material de baixa dimensionalidade na sua morfologia final. Se várias lamelas forem superpostas, obter-se-á um composto lamelar (como os aqui descritos), se forem fibras, um composto fibroso ou fibrilar.

É importante salientar que o termo "composto de baixa dimensionalidade estrutural" assim como "composto
bidimensional” não deve ser mal interpretado. Estes compostos são, como todos os outros conhecidos até hoje, tridimensionais, não há sequer sentido em imaginar um composto “bidimensional” (o mais próximo disto, mas ainda tridimensional, talvez seja uma única lamela de um composto formado por uma única camada de átomos, como o grafite). Estes termos apenas referem-se à característica destes compostos de que um determinado eixo de crescimento de seu monocristal é limitado, seja a apenas uma unidade estrutural (célula unitária) ou a poucas delas. E é este fato que conferirá propriedades singulares a estes compostos.

Compostos de baixa dimensionalidade estrutural (em especial os lamelares e fibrosos) são essencialmente anisotrópicos, pois enquanto que os átomos constituintes de suas lamelas e fibras são mantidos unidos por ligações químicas “fortes” (covalentes, na maioria dos casos), estas mesmas lamelas e fibras (unidades de repetição) são agrupadas e mantidas juntas —a fim de formar o “bulk”— por interações fracas entre elas, como ligações de hidrogênio, ligações π deslocalizadas ou interações tipo dipolo-dipolo.

Restringindo agora o universo apenas aos compostos lamelares, tem-se a seguinte situação: Inúmeras folhas formadas por átomos mantidos unidos via ligações covalentes, que encontram-se superpostas e mantidas juntas por interações fracas. Em compostos assim, dois descritores são muito
importantes: A Distância Interplanar Basal \((d) \), definida como a distância entre os centros de duas lamelas consecutivas e a Distância (ou espaçamento) Interlamelar \((l) \), que é o espaçamento existente entre as superfícies de duas lamelas subjacentes. Da própria definição, tem-se sempre que, \(d > l \).

Um exemplo ilustrativo de um composto lamelar, pode ser encontrado na figura 1.1, onde é mostrado o grafite, que foi justamente, o primeiro composto lamelar a ser estudado e devidamente caracterizado [1].

FIGURA 1.1: Modelo da estrutura lamelar do grafite, mostrando a geometria do retículo e a representação por esferas. (Adaptado de Schlögl, 1994. [2])

Há muitas classes de compostos que apresentam estrutura lamelar, o mais simples sendo o grafite, mas que ainda apresenta uma importância acadêmica e comercial muito grande [2]. Contudo, além dele, podem ser citados os calcogenatos e haletos de metais de transição, os fosfatos de zircônio e seus
Introdução

Intercalação. Estas entidades intercalantes podem ser átomos neutros (como o potássio metálico intercalado no grafite), ions (como o K⁺ intercalado no argilomineral ilita), moléculas inorgânicas (como a água intercalada no argilomineral montmorilonita), ou moléculas orgânicas (como o dimetilsulfóxido intercalado no argilomineral caulinita). O leque de aplicações de compostos de intercalação em matrizes lamelares ainda não pode ser totalmente visualizado, tamanho é a gama de matrizes e intercalantes possíveis. No entanto, aplicações como materiais para baterias recarregáveis de alta eficiência, polímeros de alta resistência e com propriedades mecânicas surpreendentes (como discutidos adiante em nanocompósitos), materiais com condutividade elétrica seletiva (anisotrópica) e catalisadores de alta eficiência, são apenas alguns dos compostos de intercalação que já são realidade industrial, e que demonstram a vasta gama de aplicações diferentes que eles podem encontrar.

O primeiro composto de intercalação preparado foi reportado no meio científico por Schafhault em 1841, e foi resultado das suas observações na tentativa de dissolver grafite em ácido sulfúrico, intercalando prótons em sua estrutura. O ressurgimento dos estudos sobre compostos de intercalação se deu com K. Fredenhagen e G. Candebach em 1926, que descreveram a captura de vapor de potássio por grafite [9].
Após um grande período de interesse voltado apenas para algumas matrizes lamelares específicas, na década de 60 é que o interesse sobre esta classe de compostos ressurgiu como um todo. Verificou-se que, por intercalação, podia-se realizar variações sistemáticas nas propriedades dessas matrizes, propriedades eletrônicas, ópticas e magnéticas variando anisotropicamente em função de transições de fase ocorridas nas matrizes, transporte iônico e eletrônico foram observadas [10]. As pesquisas com sulfetos lamelares também foram de importância fundamental na descoberta — na década de 1970 — dos oxocupratos, compostos lamelares que apresentam temperaturas críticas para a supercondutividade bastante acima dos compostos até então conhecidos [3].

A intercalação normalmente é um processo reversível, e que mantêm as características estruturais básicas da matriz hospedeira, exceto pela expansão associada, que depende do tamanho do hóspede intercalante, e de pequenas e reversíveis alterações estruturais, como distâncias e ângulos de ligação, da ordem de 0,001nm a 0,01nm. Contudo, as características físico-químicas, mecânicas, reológicas, térmicas, elétricas, ópticas, magnéticas, entre outras, podem ser profundamente afetadas pela intercalação.

As interações intercalante/matriz geram perturbações no meio químico, geométrico e eletrônico da matriz, dependendo da característica individual de cada matriz e de cada material
passível de ser intercalado. Estas perturbações podem ser controladas quando existem objetivos específicos para, por exemplo, incrementar a atividade catalítica de um material ou a capacidade de carga de baterias de alta densidade de energia, gerar dispositivos eletrocrômicos ou no uso de lubrificantes sólidos [11].

Uma reação de intercalação genérica se processa pela inserção topotática\(^1\) da espécie móvel (ou hóspede) \((A)\) em um retículo sólido hospedeiro \((Z)\) que contém sítios vazios no retículo cristalino, passíveis de serem ocupados \((\square)\). Esta reação pode ser denotada por:

\[
xA + \square \quad [Z] \leftrightarrow A_x[Z] \tag{Equação [1.1]}\]

Esta descrição é característica de compostos não-estequiométricos e se refere a aspectos estruturais fundamentais [12].

Os compostos de intercalação não apresentam apenas interesse acadêmico pois suas utilizações industriais já são amplamente distribuídas, como foi descrito anteriormente. Eles

\(^1\) **Reação Topotática**: “Aquela na qual um monocristal de um material inicial é totalmente convertido em um pseudomorfo (pseudomorfo = cristal que se converteu em outra substância, ou mistura de substâncias, sem mudar sua forma externa), contendo um ou mais produtos em uma orientação cristalográfica bem definida.” [30]
encontram utilização na construção de baterias de alta capacidade, dispositivos eletrônicos semicondutores, catalisadores dos mais diversos tipos e aplicações (talvez o maior emprego atual destas substâncias), construção de dispositivos sensores com alta especificidade, e a modificação de propriedades mecânicas de materiais poliméricos, entre tantas outras [13].

Materiais compósitos são aqueles formados por mais de um constituinte, normalmente (mas não necessariamente) unidos - e não criados- durante os seus processos de obtenção. Uma das principais características de um material compósito é apresentar propriedades que vão além da simples superposição das propriedades de seus constituintes, e que advêm de efeitos sinérgicos da união de seus componentes. Materiais compósitos são amplamente utilizados em nossa sociedade a algum tempo, podem ser citados o concreto, aglomerados de madeira, resina com fibra de vidro e outros. Um compósito resina/fibra-de-vidro por exemplo, alia a maleabilidade e moldabilidade da resina com a resistência mecânica e rigidez das fibras. Mas além disso, apresenta propriedades que são únicas desta mistura íntima, que nem a fibra nem a resina, apresentam isoladamente.

Um nanocompósito pode ser definido como um material compósito no qual as dimensões de pelo menos uma das fases envolvidas estão na ordem do nanometro. Se nos materiais
compósitos a união de fases propicia novas propriedades, devido a efeitos sinérgicos, nos nanocompósitos, a capacidade de interação entre elas é muito maior (nanofases apresentam áreas superficiais para contato muito maiores que macrofases). Este fato normalmente faz com que as novas propriedades e características do material obtido sejam muito mais evidenciadas e proeminentes do que seriam em compósitos normais, muitas vezes até superando as características iniciais dos componentes.

Se por um lado, os compósitos são uma realidade industrial e amplamente utilizados nos dias de hoje, os nanocompósitos ainda constituem uma classe nova e relativamente inexplorada de materiais. Este fato deve-se, em grande parte, à dificuldade de obtenção de compostos que interajam positivamente em escalas tão diminutas, e que sejam de produção economicamente viável em relação aos compósitos e materiais tradicionais.

Enquanto que nos compósitos o domínio de obtenção e produção é o dos processos físicos e mecânicos (fusão, prensamento, extrusão, etc.), o domínio de obtenção dos nanocompósitos é fundamentalmente diferente. Se as interações entre substâncias nesta ordem de grandeza podem ser grandemente previstas e explicadas pela química, é racional que os principais métodos de obtenção de fases que interajam em escala nanoscópica passem por ela. Síntese e análise
química (entendidas como opostos reacionais complementares) constituem a base em cima da qual os mais diversos métodos de obtenção de nanocompósitos são fundamentados. De um domínio majoritariamente físico e mecânico dos compósitos, passou-se para um estudo da química cada vez mais avançado fim de poder trabalhar-se propriamente com os nanocompósitos.

Com a mudança de parâmetros dos compósitos para os nanocompósitos, o campo de aplicações para estes materiais também modificou-se bastante. Normalmente apresentando métodos mais avançados e custos de obtenção mais elevados, podendo ser enquadrados como materiais de alta tecnologia, os usos dos nanocompósitos voltaram-se para campos mais específicos. Mas o espectro de aplicações ainda está longe de ser totalmente visualizado [14].

Uma grande parte dos nanocompósitos sintetizados e estudados atualmente, vem do resultado da união de compostos lamelares e polímeros orgânicos. E fica bastante claro o porquê: matrizes inorgânicas lamelares, além de facilmente obtidas e amplamente estudadas, apresentam características e propriedades mecânicas que notadamente podem ser vistas como antagônicas às de matrizes poliméricas, que aliadas, podem compor materiais com características muito interessantes. O ambiente estericamente restrito dos compostos lamelares pode levar a um maior grau de ordenamento das moléculas de polímero e a interessantes propriedades ópticas, elétricas e mecânicas.
Além disso, a pesquisa com nanocompósitos de compostos lamelares e polímeros orgânicos lança novas possibilidades, como os nanocompósitos que podem ser obtidos com o uso de polímeros condutores. A presença de camadas condutoras entre as camadas isolantes da matriz lamelar propicia compostos com condução elétrica anisotrópica, o que podem os tornar úteis para o uso em baterias recarregáveis, além de inúmeras outras utilizações ainda não visualizadas. Ou ainda, nanocompósitos argilomineral/cristal líquido, que apresentam propriedades de espalhamento da luz que podem ser controlados por campo elétrico ou temperatura. Estes são apenas dois exemplos de novos materiais que podem ser obtidos utilizando-se a tecnologia de nanocompósitos, aonde ainda há muito o que ser pesquisado e avançado.

Os nanocompósitos de compostos lamelares/polímeros orgânicos são normalmente obtidos por duas abordagens fundamentais: Intercalação direta do polímero, fundido ou em solução; ou pela intercalação inicial do monômero adequado e posterior polimerização no interior da matriz lamelar, por via química ou térmica.

Um aspecto importante na obtenção de nanocompósitos entre compostos lamelares e polímeros é a homogeneidade do produto final. De uma maneira geral, pode-se classificar estes nanocompósitos em quatro categorias gerais, de acordo com sua estrutura. Em um nanocompósito convencional, os tactóides
(tactóides = aglomerados de cristalitos) do composto lamelar estão uniformemente distribuídos pela matriz polimérica, já em um nanocompósito intercalado, ocorre a intercalação do polímero no composto lamelar, diminuindo assim o tamanho dos tactóides e aumentando a interação entre as fases. Pode também ocorrer a esfoliação da matriz lamelar, gerando nanocompósitos com as lamelas distribuídas ordenadamente ou randomicamente pelo polímero (ver figura 1.2).

![Figura 1.2: Ilustrações esquemáticas de nanocompósitos polímero orgânico/composto lamelar. (A) Convencional; (B) Intercalado; (C) Esfoliado e ordenado; (D) Esfoliado e desordenado. (Adaptado de LE'BARON et al., 1999 [15]).]

Em um nanocompósito convencional ou intercalado, a distância entre as lamelas inorgânicas é a própria do composto ou determinada pelo tamanho da molécula intercalada, respectivamente. No caso dos nanocompósitos onde há a esfoliação da matriz lamelar, a distância entre as lamelas é
variável e seu valor médio é determinado pela relação de quantidade entre polímero e matriz lamelar. O caso onde as lamelas estão randomicamente distribuídas pode ser, de um ponto de vista estrutural/morfológico, considerado como o nanocompósito mais bem estruturado e homogêneo. No entanto, muitas vezes, este não é melhor dos casos, e muitas propriedades interessantes podem deixar de ser obtidas desta maneira. Propriedades como os efeitos das restrições estéricas do polímero no interior das lamelas, por exemplo. Por outro lado, de um ponto de vista das propriedades mecânicas, o nanocompósito que tiver suas lamelas totalmente esfoliadas e distribuídas randomicamente pela matriz, pode apresentar muitas vantagens sobre os outros. Ou seja, dependendo da utilização que se busque, ou das propriedades que se desejem para o material, é que a sua estrutura será melhor estabelecida. [15-21].
1.2 - Argilas e Argilominerais

Mesmo dentro do meio acadêmico e científico, ainda não há um consenso geral sobre a utilização dos termos Argila e Argilomineral (em inglês: clay e clay mineral respectivamente). Tendo em vista os inúmeros empregos diferentes do termo argila, este é um termo bastante amplo e um tanto vago, utilizado alguma vezes para descrever uma faixa de dimensões de partículas (Pedregulho, Areia, Silte e Argila, sendo esta última composta por partículas com menos de 0,005 mm, segundo a ABNT). Outras vezes o termo argila é empregado como termo petrográfico para designar uma rocha, constituída por um tipo predominante de mineral (um argilomineral), mas podendo conter vários outros. Algumas vezes o termo argila é usado para descrever especificamente estes minerais que a compõem, deixando o cenário ainda mais confuso. Mas, de maneira geral, e dentro de um ponto de vista da ciência de materiais considera-se como argila "um material natural, de textura terrosa e de baixa granulometria, que desenvolve plasticidade quando misturado com uma quantidade limitada de água" [23]. A esta definição, seria importante adicionar "e composta primordialmente de um ou mais argilominerais específicos" a fim de deixá-la completa.

Já o termo argilomineral é mais específico, e poucas vezes é empregado em mais de um sentido. Podem ser definidos como tal, os minerais primordiais que compõem uma argila,
responsáveis por suas características primárias, e que tem composição química e estrutura cristalina definidas e constantes.

Quimicamente, os argilominerais formam uma classe de minerais compostos sempre por Silício, Oxigênio e Hidrogênio (arranjados em estruturas tetraédricas de silicato), e por outros elementos como Alumínio, Magnésio Zinco, Potássio, Ferro, entre outros, na forma de hidróxidos com estrutura octaédrica. No entanto, a classificação dos argilominerais é normalmente feita de acordo com a sua estrutura cristalina, assim eles são separados em duas classes fundamentais: Os silicatos lamelares ou em camadas, também chamados de filossilicatos, e os silicatos fibrosos ou em cadeia. Dentro dessas classes há vários grupos diferentes, arranjados sempre de acordo com sua estrutura e composição química. A Tabela 1.1 mostra uma classificação aceitável para os argilominerais, adaptada de mais de uma fonte. A classificação mostrada é bastante simplificada, pois os grupos e famílias diferentes muitas vezes se confundem, e um argilomineral pode ser classificado corretamente em mais de um grupo. A classificação das cloritas é bastante mais complexa, mas foram simplificadamente incluídas na tabela 1.1. Um estudo mais detalhado de sua classificação fugiria às intenções deste trabalho.
Tabela 1.1: Classificação dos argilominerais. (Adaptação de Santos, 1992 [23] e de Gomes, 1988 [24])

<table>
<thead>
<tr>
<th>Classe Geral</th>
<th>Família</th>
<th>Nome do Grupo</th>
<th>População da camada octáédrica</th>
<th>Argilominerais do grupo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrutura Lamelar</td>
<td></td>
<td></td>
<td></td>
<td>Nacrita</td>
</tr>
<tr>
<td></td>
<td>1:1 ou Difórmicos</td>
<td>1:1 ou Difórmicos</td>
<td>Dioctaédrica</td>
<td>Diquita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Caulinita</td>
<td></td>
<td>Caulinita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Serpentina</td>
<td></td>
<td>Halolita - 0,7nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Halolita - 1nm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antigorita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Criscolla</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lizardita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Orltosserpentinita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amesita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cronstedtita</td>
</tr>
<tr>
<td></td>
<td>2:1 ou Trifórmicos</td>
<td>2:1 ou Trifórmicos</td>
<td>Trioctaédrica</td>
<td>Beidelita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Esmectila</td>
<td></td>
<td>Nontronita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Volconolita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Montmorillonita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vermiculita</td>
<td></td>
<td>Saponita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sauconita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hectorita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mica</td>
<td></td>
<td>Vermiculita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Muscovita-lítra</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Glaucinita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Paragonita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Celadonita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Flogopita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Biotita-Ledulita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lepidolmineria</td>
</tr>
<tr>
<td>Estrutura Filososa</td>
<td></td>
<td>Talco-Pirofilita</td>
<td>2:1 ou Trifórmicos + folha de hidróxido</td>
<td>Pirolita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Talcio</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sudotita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cookeita</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Clinocloro</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chamosita</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clorita</td>
<td></td>
<td>Paligosquita</td>
</tr>
<tr>
<td></td>
<td>1,0 nm</td>
<td>Paligosquita</td>
<td></td>
<td>Sepiolita</td>
</tr>
<tr>
<td></td>
<td>1,2 nm</td>
<td>Sepiolita</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Uma vez que existem apenas dois representantes na classe dos argilominerais fibrosos (Paligosquita e Sepiolita), o estudo das argilas e argilominerais acaba normalmente recaíndo sobre o estudo de compostos lamelares.

Na tabela 1.1, os termos 1:1 e 2:1 referem-se, respectivamente, ao número de folhas tetraédricas de SiO₂ e octáédricas de hidróxido presentes em cada lamela do cristal. Um argilomineral 1:1 possui uma folha tetraédrica justaposta a
uma octaédrica, enquanto que um 2:1 apresenta sua folha octaédrica entre as duas folhas tetraédricas.

A classificação em argilominerais di- ou tri-octaédricos diz respeito à população das camadas octaédricas. Em um representante di-octaédrico, apenas cerca de 2/3 das posições da metade da célula unitária são ocupadas por átomos metálicos. Já em um argilomineral tri-octaédrico, as três posições estão ocupadas.

Todos esses conceitos e classificações ficam mais claros quando verificados graficamente. A figura 1.3 apresenta um esquema da formação das folhas tetraédricas de sílica e octaédricas de hidróxido. A figura 1.4 apresenta a estrutura do argilomineral 1:1 mais simples, a caulinita. A figura 1.5 apresenta a estrutura geral de um argilomineral 2:1, a muscovita. Tanto na caulinita quanto na muscovita pode-se notar claramente as folhas tetraédricas e octaédricas presentes. No caso da caulinita, uma de cada, justapostas, e na muscovita, a folha octaédrica entre as duas folhas tetraédricas.
FIGURA 1.3: Esquema da formação das folhas tetraédricas e octaédricas a partir de suas unidades básicas (adaptado de Gomes, 1988 [24]).

FIGURA 1.4: Diagrama esquemático da estrutura da caulinita (Adaptado de Grim, 1962 [25]).
FIGURA 1.5: Diagrama esquemático da estrutura da muscovita (Adaptado de Gomes, 1988 [24]).

Os inúmeros tipos de argilominerais provêm da decomposição e intemperismo sobre outros minerais da crosta, ao longo do tempo, e constituem um estágio não necessariamente final, pois ainda podem vir a sofrer transformações (metamorfizações) a outras espécies minerais.

De uma maneira geral é difícil falar das aplicações das argilas e argilominerais, tamanha é a gama de campos em que se empregam, com os mais variados propósitos e objetivos. Desde vários milênios a.C. já eram empregados fornos para a queima de tijolos, utilizando argilas como matéria prima. Mas há muito que a indústria cerâmica deixou de ter a primazia sobre o uso dos argilominerais. Apenas com cunho ilustrativo, é
apresentado na figura 1.6, um esquema representando alguns dos vários campos em que os argilominerais são estudados e utilizados. Esta gravura foi apresentada em um artigo sobre o mundo de aplicações que já se compunha em 1973 para as argilas, e mostra um ponto de vista centrado na geologia e mineralogia.

O vastíssimo campo de aplicações tradicionais dos argilominerais e argilas inclui a fabricação de alumina e obtenção de alumínio, matéria prima para indústria cerâmica, matéria prima para cimento portland, obtenção de pozolanas,
fabricação de agregados leves, fabricação de materiais refratários, aditivos e reforçadores de borrachas, plásticos e tintas, agentes de carga e cor em papel, obtenção de lamas de perfuração de poços, aglomerantes de areias de moldagem para fundição, carga (ou enchimento mineral) em têxteis, tintas e fertilizantes, diluentes para pesticidas e muitos outros [23, 26].

No entanto estas podem ser classificadas como as aplicações tradicionais, que provêm da utilização das características e propriedades básicas dos argilominerais. Pode-se dizer que a partir da década de 1960, novas e diferentes aplicações começaram a surgir, uma vez que as características estruturais e físico-químicas dos argilominerais iam sendo cada vez mais estudadas e elucidadas. Estas novas aplicações incluem o seu uso como materiais absorventes seletivos com alta especificidade, catalisadores para as mais variadas reações (muitas vezes podendo ser obtido o catalisador específico para uma reação que se deseja completar), peneiras moleculares, estabilizantes de emulsões, obtenção de nanocompósito com polímeros orgânicos, aplicações em produtos farmacêuticos, e muitos outros, que se encontram no vértice da pesquisa científica nos dias de hoje [26].

Percebe-se então, que descrever as aplicações e empregos de um grupo mineral tão vasto como dos argilominerais e das argilas, é como tentar explicar todas as possíveis utilizações
dos metais, dos vidros ou dos polímeros. Sendo que qualquer tentativa de descrição seria em pouco tempo, ultrapassada, pois inúmeras novas e diferentes aplicações estão sendo continuamente pesquisadas, descobertas e implementadas.

O argilomineral caulinita é formado pelo empilhamento regular de folhas tetraédricas de silicato -SiO₂- e octaédricas de gibsita -Al₂(OH)₆- na proporção de 1:1, ligadas entre si em um única camada, através do oxigênio em comum (ver figuras 1.4 e 1.9), resultando em uma estrutura fortemente polar. A fórmula da célula unitária da caulinita é Al₄Si₄O₁₄(OH)₈, mas ela é normalmente representada pela sua fórmula mínima, metade da célula unitária Al₂Si₂O₅(OH)₄. Sua composição percentual é SiO₂ = 46,54%, Al₂O₃ = 39,50% e H₂O = 13,96%. A estrutura cristalina é eletricamente neutra, e normalmente não apresenta significativas substituições estruturais por outros átomos metálicos. Os átomos de alumínio ocupam dois terços das posições octaédricas, a fim de neutralizar as cargas residuais dos silicatos.

A estrutura da célula unitária da caulinita é triclinica e teve seus valores determinados por R. E. Newnham e G. W. Brindley em 1957: a = 0,5139 + 0,0014 nm; b = 0,8932 + 0,0016 nm; c = 7,371 + 0,0019 nm; α = 91,6 ± 0,2°; β = 104,8 ± 0,2° e γ = 89,9 ± 0,1°. Apesar de outros grupos de valores terem sido publicados por diferentes autores (P. R. Swith e R. A. Young, 1983; B. B. Zvyagin, 1960, por exemplo), os valores acima
continuam sendo amplamente aceitos, e mesmo diferenças genéticas ou a presença de substituições isomórficas de diferentes amostras podem acarretar em pequenas diferenças estruturais.

A espessura ou a distância vertical entre as camadas basais, indicada por \(d_{001} = c_0 (1 - \cos^2 \alpha - \cos^2 \beta)^{1/2} = 0,715 \text{ nm} \), é a chamada distância interplanar basal ou espaçamento basal da caulinita.

Há uma classificação usual da caulinita, de acordo com aspectos estruturais, em "bem cristalizada" e "mal cristalizada" (ou altamente e pouco cristalina). Esta classificação baseia-se no empilhamento das camadas unitárias. Nas amostras bem cristalizadas este empilhamento é bastante regular, os ângulos da célula unitária permitem um empilhamento em que as unidades de caulinita se acham imediatamente umas sobre as outras, isto é, regularmente ao longo do eixo \(b \), mas estão deslocados de uma distância \(a_0/3 \) ao longo do eixo \(a \). Os planos entre as camadas 1:1 são um plano de clivagem, o que não implica numa clivagem fácil, pois as ligações de hidrogênio entre as camadas estão especialmente favorecidas devido ao grande ordenamento cristalino, que acaba por colocar um grupamento OH adjacente a um oxigênio, formando os pares. Este tipo de caulinita, perfeitamente cristalizada e ordenada, não é comum.
A caulinita bem cristalizada é constituída de placas de perfil hexagonal, que refletem o caráter pseudo-hexagonal da sua estrutura, devido ao arranjo hexagonal das unidades constituintes das folhas de silicato e hidróxido de alumínio. A espessura destas placas é muito menor que o diâmetro de suas faces hexagonais, daí resultando a morfologia anisométrica2 das partículas de caulinita. Em média a relação diâmetro/espessura é próxima de 25. A dimensão média dos cristalitos está na faixa de 0,5 \(\mu\)m a 1 \(\mu\)m, mas estas dimensões variam muito, de acordo com a origem da caulinita.

Normalmente, o que ocorre na caulinita é que o empilhamento das camadas não é totalmente perfeito, mas há algum pequeno deslocamento aleatório das camadas paralelamente ao eixo \(b\). Este tipo de caulinita, quando apresenta deslocamento considerável, a ponto de tornar seus cristalitos menores, mais finos que o usual (algumas vezes tão finos que apresentam tendência de enrolar nas bordas), com maior tendência a clivagem basal e com um perfil hexagonal menos nítido, é impropriamente chamado de caulinita mal cristalizada. O termo mais correto seria caulinita com desordem ao longo do eixo \(b\) [23-25, 27-30].

2 Anisométrica: Que possui um relação bastante dispar entre suas dimensões, i.e., altura X largura X comprimento.
As figuras 1.7 e 1.8 mostram duas micrografias de uma amostra de caulinita (a mesma que foi utilizada nos experimentos aqui descritos) sob diferentes magnificações. Estas imagens foram obtidas por Microscopia Eletrônica de Varredura (MEV), após metalização das amostras puras com ouro. Sua morfologia com perfis hexagonais e ângulos de cerca de 120° podem ser vistos claramente, além de apresentarem cantos e arestas bem definidos. As dimensões dos cristalitos estão na faixa de 0,2-2 μm e com cerca de 0,1 μm de espessura. Eles possuem a característica de serem pouco empilhados, gerando uma caulinita de baixa granulometria, que se aplica muito bem à indústria papeleira.

FIGURA 1.7: Micrografia de uma amostra de caulinita da região do Rio Capim, na bacia Amazônica (PP-0559).
FIGURA 1.8: Micrografia de uma amostra de caulinita da região do Rio Capim, na bacia Amazônica (PP-0559).

A estrutura da caulinita apresenta quatro diferentes tipos de hidroxilas, de acordo com sua orientação geométrica (ver figura 1.9). Cada uma destas hidroxilas apresenta valores energéticos diferentes para a absorção no infravermelho, e podem assim ser distinguidas (ver figuras 4.8 e 4.11, por exemplo). Em casos de estudos de intercalação e interação de compostos com a matriz da caulinita, estes valores podem ser bastante úteis em elucidações estruturais do composto intercalado. A figura 1.9 mostra um modelo estrutural da caulinita que distingue os quatro tipos de hidroxilas presentes.
FIGURA 1.9: Modelo estrutural da caulinita, diferenciando os quatro tipos de hidroxilas presentes, de acordo com sua geometria. (Adaptado de Frost, 1998 [28])
1.3 - Intercalação em Argilominerais Lamelares

Os primeiros relatos de adsorção envolvendo argilominerais datam de 1908 em estudos de J. E. Gilpin e M. P. Cram sobre a descoloração de óleos com o uso de argilas. Muitas outras observações sobre fixação de substâncias orgânicas em argilas foram realizadas, mas foi somente na década de 1930, com a utilização da técnica de difratometria de raios-X que surgiram as primeiras evidências de modificação estrutural. Em 1934 U. Hofmann, K. Endell e D. Wilm mostraram que a dimensão do eixo c da montmorilonita variava após o tratamento com álcool, acetona e éter. Em 1939 L. E. Ensminger e J. E. Gieseking demonstraram efetivamente que íons orgânicos podiam ser intercalados na montmorilonita, encontrando-se adsorvidos nas superfícies dos seus planos basais interlamelares[27].

A partir do início da década de 1940, surgiram muitos relatos sobre a intercalação de compostos orgânicos polares em argilominerais, no entanto a totalidade deles restringia-se ao grupo das esmectitas e à haloisita. Este fato é facilmente compreendido, uma vez que as esmectitas possuem cátions hidratados/solvatados e facilmente trocáveis nos seus espaçamentos interplanares basais, o que facilita o acesso de possíveis intercalantes. No mesmo sentido, a haloisita apresenta moléculas de água já naturalmente intercaladas na sua estrutura. Por outro lado, a caulinita não apresenta nem
água nem tampouco cátions intercalados em sua estrutura, o que torna as interações entre suas lamelas bastante acentuadas.

Foi somente na década de 1960 que surgiram os primeiros relatos de reações de intercalação na caulinita. Os primeiros trabalhos foram publicados em 1960 e 1961, por K. Wada e M. L. Jackson e tratavam da intercalação de acetato de potássio por moagem a seco (reação no estado sólido) e por tratamento do argilomineral com solução saturada do sal. Logo em seguida surgiram as publicações de A. Weiss, em 1961 e 1963, sobre a intercalação de Uréia e hidrato de hidrazina, de W. D. Miller e W. D. Keller, em 1963, relatando a intercalação do etilenglicol. Em 1968 S. Olejnik reportou a intercalação de dimetilsulfóxido [29], em 1969 M. Cruz e J. E. White a de formamida, metil-formamida e dimetil-formamida [30, 31].

Portanto, em uma década foram descobertas cerca de dez substâncias diferentes, capazes de intercalar diretamente na matriz da caulinita, todos envolvendo pequenas moléculas orgânicas fortemente polares (hidrazina, formamida, dimetilsulfóxido) ou sais de ácidos carboxílicos pequenos com grandes cátions de metais alcalinos e amônio (acetato de potássio). Até os dias de hoje, a situação não mudou muito. Foram descobertas poucas outras moléculas que fossem capazes de intercalar diretamente na caulinita. Algumas propostas para explicação da intercalação ou não de algumas moléculas orgânicas, baseadas em aspectos cinéticos, termodinâmicos e
estéricos foram dadas por Olejnik et al. [32]. No entanto, descobriu-se que uma nova gama de substâncias poderiam ser indiretamente intercaladas entre as lamelas da caulinita. Utilizando-se algum composto de intercalação da caulinita, como caulinita/NMF ou caulinita/DMSO como precursores, ao invés da caulinita pura, inúmeras outras moléculas poderiam ser intercaladas. Com o uso dos precursores pré-expandidos, as moléculas não encontram toda a resistência que encontrariam para romper as ligações de hidrogênio existentes entre as lamelas da matriz não intercalada, devendo então apenas substituir a molécula já intercalada.

Utilizando-se deste método de obtenção de compostos de intercalação secundários da caulinita já foram reportados a obtenção dos compostos com oxalato, gliconato, lisinato, alaninato e lacatato de potássio, glicerol, n-octilamina e benzidina [30], benzamida [33] e 1-metil-2-pirrolidona [34]—estes dois últimos preparados pelo nosso grupo e aqui descritos—, lactamas [35] e propionato de amônio [36], entre outros. Vários polímeros orgânicos também foram intercalados com sucesso, a fim de obter nanocompósitos com as mais variadas propriedades, como PEO e PHB [37]—ambos preparados pelo nosso grupo e aqui descritos—, poliacrilamida [38], polivinilpirrolidona e poliacrilonitrila [39] e polietilenglicol [40], entre outros.
Muito interesse também tem sido despertado pela obtenção de uma fase denominada caulinita hidratada, que é obtida pela intercalação de moléculas de água. Inicialmente este composto foi obtido por tratamentos do argilomineral com DMSO e fluoreto de amônio [41, 42], mas posteriormente foi mostrado que também poderia ser obtido o mesmo produto, pela intercalação inicial com metanol e posterior tratamento deste produto com água [43]. Também foi mostrada a possibilidade de obtenção pela intercalação com etilenoglicol e posterior tratamento com água [44]. Nosso grupo demonstrou que a mesma fase hidratada, embora com uma desordem cristalina um tanto maior, também poderia ser obtida por sucessivas intercalações com uréia seguidas de lavagem do material com água [45].

Esta fase de caulinita hidratada, ou mesmo o composto caulinita/metanol, que é bastante instável, tem se mostrado particularmente interessante como precursor para a obtenção de outros compostos de intercalação, como os com anilina [46] — resultante de nossos trabalhos e descrito aqui—, p-nitroanilina [47], aminoácidos [48], alquilaminas [49] e piridina [50], entre outros.

Também há propostas de compostos mistos como precursores para novas intercalações, como o composto caulinita/NMF/metanol [51] ou o composto resultante do tratamento da caulinita com CsCl, hidrazina e DMSO [52].
Além das reações de intercalação já foram reportados alguns casos de funcionalização da matriz da caulinita, isto é, moléculas que reagem quimicamente com a superfície das lamelas, ligando-se covalentemente a elas, permanecendo nos espaçamentos interlamelares da matriz. Estes compostos abrem novas possibilidades no campo de pesquisas com argilominerais, uma vez que a superfície das lamelas pode ser controlada com a presença de moléculas orgânicas quimicamente ligadas. Já foram reportadas as funcionalizações com etilenoglicol [53-54], metanol (grupamentos metoxi) [55-56], ácido fenilfosfônico (grupamentos fenilfosfonato) [57] e etanolamina [58].

O campo de pesquisas em intercalação em argilominerais não restringe-se apenas à síntese de novos compostos, pois tão importante como a sua obtenção, são os estudos sobre sua estrutura, comportamento térmico e de desintercalação, propriedades e características físico-químicas, coloidais, catalíticas e reatividade, entre tantos outros. Estes estudos tem sido amplamente realizados e uma vasta gama de sempre novas publicações revela a importância que este campo de estudos tem ocupado [59-85].
2 - OBJETIVOS E MOTIVAÇÕES

O objetivo primordial dos trabalhos deste mestrado residiu na síntese e caracterização de novos compostos de intercalação da caulinita. Para tal feito, inicialmente foram preparados dois compostos de intercalação primários (Caulinita/Dimetilsulfóxido e Caulinita/Acetato de potássio) e três secundários (Caulinita/Metanol, Caulinita/Água (1 nm) e Caulinita/Água (0,8 nm) de acordo com os procedimentos usados da literatura. Os compostos obtidos foram, quando possível, caracterizados utilizando as técnicas de PXRD, TA (TG/DSC) e FTIR.

A partir desses compostos primários, foram feitas inúmeras tentativas de síntese de novos compostos de intercalação secundários. Mesmo com um grande número de sínteses que não foram bem sucedidas, foram obtidos cinco compostos até então inéditos: Caulinita/N-metil-pirrolidona, Caulinita/Benzamida, Caulinita/Poli(óxido de etileno), Caulinita/Poli(β-hidroxibutirato) e Caulinita/Anilina. Estes compostos foram igualmente caracterizados pelas técnicas descritas acima. Além disto, alguns destes compostos tiveram sua morfologia estudada com o auxílio da microscopia eletrônica de varredura (MEV). Um grande esforço foi também concentrado na tentativa de polimerização da anilina no composto caulinita/anilina, a fim de obter-se o nanocompósito argilomineral/polímero orgânico.
Estas tentativas, no entanto, não foram completamente bem sucedidas.

Paralelamente às tentativas de síntese e caracterizações dos compostos, sempre esteve presente a busca por novos caminhos e novas possibilidades para esses e outros compostos derivados da matriz da caulinita. O campo de aplicações para os compostos de intercalação com diversas matrizes é muito amplo, como foi devidamente exemplificado na introdução deste trabalho. No entanto, as aplicações de compostos derivados da caulinita ainda são muito restritas. Portanto, qualquer evolução neste cenário já seria uma grande passo. E possibilidades podem ser visualizadas com muita facilidade: A indústria papeleira é uma grande consumidora da caulinita, que é empregada como carga mineral e como texturizante de superfície, então, se forem produzidos derivados da caulinita que apresentem cores diversas, estes compostos serão de valor inestimável para esta indústria, pois suas vantagens sobre a coloração direta na massa do papel seriam várias, como diminuição/eliminação do descoramento e a diminuição do emprego de corantes, muitas vezes nocivos ao ambiente.

Um composto derivado da caulinita que apresente um polímero orgânico condutor intercalado, apresentaria características muito interessantes de condução anisotrópica, o que possivelmente faria dele uma matéria prima de componentes eletrônicos altamente especializados.
Um composto de intercalação da caulinita com polímero orgânico pode apresentar características mecânicas significativamente superiores ao polímero puro. Se este fato for considerado juntamente com a possibilidade de utilização de polímeros biodegradáveis (como o PHB, por exemplo), o cenário fica incrivelmente promissor, levando em conta a sempre crescente preocupação com o meio-ambiente.

Finalmente, mas de fundamental importância, deve ser destacado, que o Brasil é hoje o terceiro maior produtor mundial de caulinita, e as reservas, ainda quase intocadas, da região da bacia Amazônica são maiores que todo o restante das reservas mundiais [22]. Em face destes dados é fácil de entender que as pesquisas em compostos derivados da caulinita, que apresentem vantagens em relação a compostos já existentes, ou que possam ter ainda novas aplicações, são de importância estratégica para o País.
3 - MATERIAIS E MÉTODOS

3.1 - Síntese dos compostos de intercalação

Durante todos os trabalhos de síntese foi utilizada uma amostra de caulinita fornecida pelo Centro de Pesquisas da Petrobrás (CENPES, Rio de Janeiro), retirada do depósito do Rio Capim na bacia Amazônica. A amostra identificada pelo código PP-0559 (ver figura 1.7) foi recebida como um pó amarelo-pálido de alto nível de cristalinidade (como visto mais adiante pelas análises de PXRD), estando contaminada com pequenas concentrações de titânio e ferro estruturais, de acordo com o que foi determinado por análise química (TiO$_2$ = 1,2% ± 0,2 e Fe$_2$O$_3$ = 0,7% ± 0,1) e ressonância paramagnética eletrônica (EPR) [86]. Nenhum contaminante cristalino foi detectado por difração de raios-X de pó (PRXD). Esta caulinita foi utilizada como recebida, sem purificações posteriores.

3.1.1 - Síntese dos compostos de intercalação precursors

3.1.1.1 - Síntese do composto Caulinita/DMSO

O composto de intercalação caulinita/dimetilsulfóxido foi obtido de acordo com uma metodologia ligeiramente modificada em relação ao procedimento padrão da literatura [29]. Uma mistura de 9 g de caulinita, 60 ml de dimetilsulfóxido (Merck,
PA) e 5,5 ml de água destilada foram inicialmente colocados em contato em frasco fechado, em um banho de ultra-som aquecido a 60°C por 1 h. Após este período a mistura foi deixada reagir no mesmo frasco, em estufa a 60-70°C por um período de 20 dias.

![Diagrama](image)

FIGURA 3.1: Estrutura do DMSO.

A mistura assim obtida foi centrifugada a 4500 rpm a fim de separar as fases, a fase da caulinita foi então seca em mufla a 35-40°C por 5 dias, encontrando-se então pronta para uso posterior. Este material será designado como K-DMSO.

3.1.1.2 - **Síntese do composto Caulinita/CH₃COOK**

O composto de intercalação caulinita/acetato de potássio, também foi obtido de acordo com uma metodologia ligeiramente modificada em relação ao procedimento padrão da literatura [74, 79]. Uma mistura de 8 g de caulinita e 3,4 g de CH₃COOK (Merck, PA), foi moída manualmente por 15 minutos em gral de porcelana e posteriormente por 2h em moinho de bola automático (Fritsh-Analysette 3). A mistura, que se encontrava parcialmente úmida devido à higroscopicidade do acetato, foi deixada em estufa por 100°C até secagem completa e então foi adicionado 1,1 ml de água destilada e moído manualmente por
mais 15 minutos, seco novamente em estufa e novamente adicionado 1,1 ml de água destilada. Finalmente, a mistura foi moída por mais 2 h em moínho de bola automático, quando foi considerada pronta para uso posterior. Este composto será agora designado como K-Acetato.

![Estrutura do Acetato de Potássio](image)

FIGURA 3.2: Estrutura do Acetato de Potássio.

3.1.2 - Síntese dos compostos de intercalação secundários

3.1.2.1 - Síntese do composto Caulinita/NMP [34]

Uma amostra de 1,5 g do composto K-DMSO foi colocada para reagir em frasco fechado, sob agitação constante e em temperatura ambiente, com 50 ml de 1-Metil-2-Pirrolidon (Merck, PA) por 7 dias. O composto obtido foi seco a 60°C por 24 h e posteriormente a 150°C por 24 h. Este composto será designado como K-NMP.

![Estrutura da NMP](image)

FIGURA 3.3: Estrutura da NMP.
Como amostra de controle, foi feita a mesma reação, substituindo-se o K-DMSO por caulinita pura.

3.1.2.2 - Síntese do composto Caulinita/Benzamida [33]

500 mg do composto K-DMSO foram misturados com 1 g de benzamida (Merck, PA), e aquecidos a 140°C (a fim de fundir a benzamida) em tubo aberto por 4 dias. Após resfriar, o produto foi moído, lavado várias vezes com acetona e seco ao ar. Este composto será designado como K-BZ.

FIGURA 3.4: Estrutura da benzamida.

Uma reação de controle foi feita, nas mesmas condições, substituindo-se o composto K-DMSO por caulinita pura.

3.1.2.3 - Síntese do composto Caulinita/PEO

2,5 g de Poli(óxido de etileno) (Aldrich, PA; M = 100.000 g/mol) foram moídos com 500 mg de K-DMSO em gral de porcelana até homogeneização total. Esta mistura foi colocada em tudo aberto e aquecida em mufla a 130°C, para fusão do polímero, por 4 dias. O material obtido foi moído e lavado várias vezes com água destilada e seco em estufa a 50°C por 48 h. Este composto será designado como K-PEO.
FIGURA 3.5: Estrutura de um trecho da molécula polimérica de PEO.

Uma reação de controle foi feita seguindo o mesmo procedimento, mas utilizando-se caulinita pura ao invés de K-DMSO.

3.1.2.4 - Síntese do composto Caulinita/PHB

Para esta síntese foi utilizada uma amostra de poli-β-hidroxibutirato \((M = 189.000 \text{ g/mol})\) obtida da Marlborough Biopolymers (Billighan, UK), e purificada por precipitação em uma mistura de N,N-dimetilformamida/dietiléter.

1,7 g de PHB foram moídos com 0,425 g de K-DMSO em gral de porcelana e após homogeneização a mistura foi aquecida em tubo aberto, a 180°C por 4 dias. O produto foi moído e lavado com NMP por 3 dias (3 lavagens) e após, com acetona por mais 2 dias. Este produto foi então seco a 50°C por 24 h. Este produto será designado como K-PHB.

FIGURA 3.6: Estrutura da unidade básica de repetição (monômero) da molécula de PHB.
Uma reação de controle foi feita seguindo o mesmo procedimento, mas utilizando-se caulinita pura ao invés de K-DMSO.

2.1.2.5 – Síntese do composto Caulinita/Metanol

O composto caulinita/metanol foi obtido de acordo com o procedimento da literatura [4]. 2 g de K-DMSO foram misturados sob agitação constante, com 50 ml de metanol (Carlo Erba, PA), em temperatura ambiente. Este sistema foi deixado reagir por 24 h, tempo após o qual o material foi centrífugado a 4500 rpm, retirado o solvente e adicionados mais 50 ml de metanol. No total, este procedimento foi repetido por 8 vezes. O produto final, designado por K-Metanol, permaneceu sob o solvente de sua última lavagem.

3.1.2.6 – Síntese do composto Caulinita/Água (Caulinita Hidratada)

O produto da síntese caulinita/metanol (item 3.1.1.3) teve seu solvente (metanol) substituído (após centrifugação) por 50 ml de água destilada, e foi deixado sob agitação em temperatura ambiente por 24 horas, após as quais foi centrífugado e teve sua água novamente trocada. Após mais 24 horas de reação o produto foi centrífugado e separado em duas alíquotas, uma delas permaneceu em água, e será denominada de
K-Água, enquanto que a outra parte foi seca ao ar por 3 dias e será designada como K-Hidr.

3.1.2.7- Síntese do composto Caulinita/Anilina

1 g do composto K-Hidr foi colocado para reagir com 20 ml de anilina recém destilada (Vetec, PA), sob agitação constante e temperatura ambiente por 3 dias. Após este período, foi adicionada lentamente e sob agitação, uma solução de HCl 6 mol/L até que fosse obtido um pH entre 4,5 e 5 (controlado com papel indicador). Prosseguiu-se com a agitação por mais 2 dias. Foi retirada uma alíquota de material sólido, juntamente com cerca de 10 ml da solução, sendo esta amostra denominada {Al}. O restante do material foi então centrifugado, lavado repetidas vezes com água destilada e uma alíquota foi seca ao ar para caracterização, o restante foi utilizado nas tentativas de polimerização seguintes. Este produto será designado como K-Anil.

FIGURA 3.7: Estrutura da anilina.
3.1.2.8 - Tentativas de síntese do composto Caulinita/PANI

Várias abordagens experimentais diferentes foram empregadas a fim de obter-se o composto intercalado com o polímero da anilina, entre elas as seguintes:

- Durante o procedimento do item 3.1.3.1 foi utilizada a parcela ainda úmida. Esta foi dividida em 2 partes (± 100 mg de material seco cada uma) e um procedimento diferente foi empregado para cada uma delas:

 À primeira parcela do composto caulinita/anilina, ainda úmida, foram lentamente adicionados 10 ml de uma mistura 1:1 de soluções de HCl 1 mol/l (Carlo Erba, PA) e de (NH₄)₂S₂O₈ 1 mol/l (Merck, PA). Este sistema foi então deixado sob banho de gelo e agitação constante por mais 1h, tempo após o qual o produto foi centrifugado, lavado com água (2 vezes), acetona (3 vezes, com um tempo total de 24 horas), NMP (3 vezes, com um tempo total de 2 dias) e finalmente mais uma vez com acetona. Após as lavagens, o produto foi seco ao ar. Parte desta amostra, denominada K-PANI, foi separada p/ caracterização, o restante foi lavado com NMP por mais 3 vezes, em lavagens com duração de 24h cada, e em seguida com acetona por mais 2 vezes. Esta amostra foi denominada K-PANI’.

 A segunda parcela do composto foram adicionados, lentamente, sob banho de gelo, 20 ml de uma solução 1 mol/l de FeCl₃ (Merck, PA). Esta mistura ficou sob agitação durante 24h, depois foi centrifugada, lavada com água destilada (3 vezes),
acetona (3 vezes, com tempo total de 1 dia), NMP (4 vezes, com tempo total de 3 dias), novamente com acetona e, finalmente, seca ao ar.

Na terceira tentativa utilizou a amostra do item 3.1.2.7 denominada [A1]. Este composto foi colocado em balão de vidro acoplado a um condensador de refluxo e colocado sob aquecimento (±130°C) por 5 dias. O composto assim obtido foi centrifugado, lavado e seco como descrito no parágrafo anterior.

- Uma mistura de caulinita hidratada (±200 mg) com 5 ml de anilina pura recém destilada, foi deixada polimerizando naturalmente, em tubo aberto, na presença da luz ambiente, por 6 meses. Este material foi caracterizado por PXRD sem posterior tratamento.

- 600 mg de K-Aacetato foram misturados com 10 ml de anilina recém destilada e 40 ml de acetona (Carlo Erba, PA), sob aquecimento, em sistema de refluxo, por 2 dias. O produto foi lavado com acetona e seco ao ar.

- 1 g de K-DMSO foi misturado com anilina recém-destilada, por 24 h. Metade do material foi posto em contato com solução de HCl 2 mol/1 por mais 24 h. As duas alíquotas foram então, separadamente polimerizadas com persulfato de amônio, como descrito anteriormente, lavadas (com água, acetona e NMP) e secas.
3.1.3 - Outras tentativas de síntese

Várias outras tentativas de síntese de compostos de intercalação com caulinitida foram experimentadas, algumas das quais sendo descritas na sequência. Nenhuma delas foi bem sucedida.

K-DMSO foi fundido a 50°C por 24 h com o polímero 18-coroa-6, produto lavado com acetonitrila.

Caulinitida pura foi refluxada com solução de Na₂HPO₄ em água/acetona (1:1) por 5 dias. O mesmo sistema, em outra tentativa, teve o pH acertado para ±5 com HCl 6 mol/l, sendo o produto lavado com água.

K-DMSO foi misturado com Ácido Lático (Merck, PA) a 75°C, sob atmosfera de argônio, por 3 dias. O produto foi lavado com água. Ao mesmo sistema foi adicionado acetona e refluxado por mais 8 dias, sendo o produto lavado com acetona.

Caulinitida pura e K-Acetato foram colocados para reagir com uma mistura de ácido lático e KOH (hidróxido suficiente para pH = 6), em temperatura ambiente por 4 dias. Os produtos foram lavados com água.

Caulinitida hidratada foi colocada em contato com uma solução 1:1 de ácido lático em água por 6 dias em temperatura ambiente. O produto foi lavado com água.

K-DMSO foi adicionado a soluções de tioacetamíida em água e em acetona e deixado reagir por 7 dias. Os produtos foram lavados com água e com acetona, respectivamente.
K-Acetato foi misturado com solução de tioacetamida em acetona por 7 dias e lavado com acetona.

Caulinita pura e K-DMSO foram misturados com solução aquosa de tiourea por 3 dias. Os produtos foram lavados com água.

K-DMSO foi refluído com solução de tiourea em água/acetona (1:1) por 5 dias. O produto foi lavado com acetona.

Caulinita pura e K-DMSO foram misturados com solução de fenilureia em água/acetona (1:1). Os produtos foram lavados com acetona.

K-DMSO foi refluído por 3 dias com solução de dimetilglicoxima em etanol/água (4:1). O produto foi lavado com etanol.
3.2 - Métodos de Caracterização

Todas as reações pesquisadas neste trabalho tem uma característica básica em comum: a intercalação de moléculas na matriz de caulinita, causando uma variação no seu espaçamento interplanar. Somente este fato já faz com que a técnica de difração de raios-X de pó seja sempre a primeira técnica de caracterização empregada. Dependendo dos resultados encontrados, é que se procede ou não a outras técnicas de caracterização, como a análise térmica e a espectroscopia de absorção no infravermelho.

A fim de explicar uma reação bem sucedida todas essas técnicas, e talvez até outras, são necessárias. No entanto, quando a reação não foi bem sucedida, apenas a difração de raios-X já é suficiente, por mostrar a matriz sem modificações. Cabem, então, as considerações sobre porque a reação não foi bem sucedida.

3.2.1 - Difractometria de Raios-X - Método do Pó (PXRD) [87]

A técnica analítica de difração de raios-X de pó (PXRD) consiste em submeter uma amostra (supostamente microcristalina) a um feixe de radiação monocromática de comprimento de onda da ordem de 0,1 nm (raios-X), e detectar os ângulos nos quais esta amostra difrata este feixe. Sabendo-se estes ângulos é possível, de acordo com a lei de Bragg,
encontrar as dimensões da cela unitária do cristal sob análise.

No caso específico da análise de materiais lamelares, ou bidimensionais, durante a preparação da amostra a ser analisada, faz-se com que haja uma orientação preferencial dos cristalitos, evidenciando sua face (001). Esta orientação é obtida prensando-se a amostra levemente contra o porta-amostras. Uma vez que os cristalitos apresentam morfologia em camadas finas, eles facilmente ficarão orientados paralelamente ao eixo c (deitados). Com esta orientação preferencial, normalmente eliminam-se os picos de difração referentes às outras direções do cristal, e os picos obtidos são somente os que dizem respeito às reflexões dos planos basais da amostra.

Desta maneira, a avaliação dos espaçamentos interplanares basais da amostra pelo difratograma de raios-X possibilita a verificação de eventuais mudanças nos espaçamentos interlamelares da mesma assim como o acompanhamento de eventuais reações ou tratamentos que afetem estes espaçamentos.

O equipamento utilizado em todas as medidas feitas foi um difratômetro Rigaku, utilizando radiação Kα do Co, filtrada com Ni (λ = 0,17902 nm). A fim de remover radiações indesejadas foi utilizado, entre a amostra e o detetor, um monocromador de grafite, construído pelo laboratório de Óptica e Raios-X da
UFPR (LORXI). Todas as medidas foram feitas com uma tensão do gerador de 40 kV, corrente do gerador de 20 mA e velocidade de varredura de 1°/min.

As amostras em pó foram preparadas para leitura prensando-se cerca de 250 mg em uma lâmina de vidro especialmente preparada para servir de porta-amostras para o equipamento. A própria prensagem do material já possibilita uma grande orientação preferencial dos cristalitos, com seu plano basal paralelo ao porta-amostra.

Foi utilizada uma pequena quantidade de silício em pó, colocada sobre a amostra já preparada, como padrão interno de calibração na maioria das amostras analisadas. Ele é identificado nos difratogramas como um pico em 2θ = 33,177° e com a legenda "Si". Todos os difratogramas utilizados foram corrigidos utilizando o pico do silício como referência.

A obtenção do valor das distâncias interplanares basais d para os picos foi feita, sempre que possível, a partir da reflexão de maior ordem possível, a fim de minimizar os erros de baixo ângulo.

O Índice Aparente de Intercalação (II) foi determinado utilizando-se a técnica mais aceita e empregada quando da análise de argilominerais e seus derivados. Esta técnica baseia-se na da razão da intensidade da primeira reflexão basal do composto intercalado (In₁) pela soma desta intensidade
com a intensidade da primeira reflexão basal da matriz não intercalada restante \((K_1)\), multiplicado por 100, ou seja:

\[
H = \frac{ln_i}{ln_i + K_1} \times 100
\]

(Equação [2.1])

Este método, apesar de bastante simples, apresenta algumas incorreções intrínsecas, pois assume-se uma total linearidade de resposta da quantidade de material com a intensidade do pico. A fim de obter-se dados mais precisos, poderia ser utilizado o valor da área total do pico ao invés da sua intensidade, o que também exigiria o estabelecimento de uma linha-base no difratograma, e tratamentos gráficos mais detalhados.

3.2.2 - Análise Térmica [88, 89]

Entende-se como Análise Térmica todo conjunto de técnicas com as quais mede-se a variação de uma propriedade física de uma substância e/ou seus produtos de reação em função da temperatura, enquanto a substância é submetida a um programa de temperatura pré-estabelecido e controlado. As medidas são geralmente contínuas e lineares com o tempo e os resultados são curvas específicas para cada substância e condição de análise, em função da temperatura. As características das curvas, como picos, descontinuidades, alterações de inclinação, são chamados de eventos térmicos da amostra.
Os dados gerados numa análise térmica são influenciados por muitos parâmetros experimentais, como a dimensão e massa da amostra, a velocidade de aquecimento ou resfriamento, a natureza e composição da amostra, a história térmica e mecânica da amostra, a velocidade de fluxo e a composição da atmosfera de análise, e as dimensões e formato do recipiente de análise.

Muitos fenômenos podem ser estudados em uma amostra sólida por técnicas de análise térmica, como desidratação, fragmentação, reações com a atmosfera circundante, pirólise, combustão, decomposição, oxidação, volatilização, sublimação, fusão, transição de fase estrutural, entre outras.

As técnicas de análise térmica ocuparam um papel muito importante na caracterização dos compostos relatados neste trabalho. Estas técnicas forneceram dados, por exemplo, sobre a quantidade de água/umidade presente na amostra, quantidade de matéria orgânica intercalada, estequiometria do composto intercalado, pureza da matriz original, presença de material não intercalado em excesso no produto e alterações no comportamento térmico da matriz.

Todas as medidas de termogravimetria (TG) e de calorimetria diferencial de varredura (DSC) foram realizadas simultaneamente em um equipamento Netzsch STA-409 EP sob atmosfera estática de ar, a menos onde indicado o contrário. Amostras de aproximadamente 20 mg foram colocadas em cadinhos
de alumina e aquecidos entre 30°C e 1000°C. Normalmente foi utilizada uma taxa de aquecimento de 5°C/min, a menos que se indique o contrário, utilizando um cadinho vazio como referência.

3.2.2.1 - Termogravimetria - TG

A termogravimetria, ou análise termogravimétrica (TG) consiste na medida da variação de peso, traduzida como uma variação mássica, para a interpretação do fenômeno, de uma substância em função da temperatura e do tempo. Para isso alguns miligramas da amostra são colocados em um cadinho (normalmente de Alumina ou Pt) acoplado à uma microbalança eletrônica de alta precisão. A parte do sistema que contém o cadinho e seu suporte situa-se dentro de um forno com alta capacidade de controle de temperatura. A amostra é, então, aquecida a uma velocidade constante e a variação de peso é registrada. A análise pode ser sob fluxo de gás ou não. No primeiro caso, uma curva de calibração deve ser estabelecida com o cadinho vazio a qual é posteriormente subtraída da curva experimental. A velocidade de aquecimento e o gás utilizado (inclusive seu fluxo) devem sempre ser especificados, já que diferentes comportamentos podem ser observados com a variação das condições de análise.
As curvas de termogravimetría são registradas com a temperatura (ou tempo) no eixo horizontal e a variação mássica (em mg ou %) no eixo vertical.

3.2.2.2 – Calorimetria Diferencial de Varredura – DSC

Na técnica de caloría diferencial de varredura (DSC) a temperatura da amostra é comparada à da referência inerte, normalmente um cadinho vazio, situado ao lado do cadinho que contém a amostra, no suporte da microbalança, no decorrer da programação de temperatura. As temperaturas da amostra e da referência são as mesmas até que ocorra algum evento térmico na amostra, como fusão, decomposição, desidratação ou alguma transição de fase. Na verdade qualquer evento onde haja alteração da entalpia entre produtos e reagentes, é passível de ser detectada. Quando o evento é endotérmico a referência é aquecida em relação à amostra, e quando o evento é exotérmico, a amostra é aquecida. A diferença de temperaturas entre amostra e referência é acompanhada pelo uso de um termopar conectando os dois. Quando há diferença de temperaturas gera-se um sinal elétrico, que é registrado.

Como na análise termogravimétrica, as curvas de DSC são registradas com a temperatura (ou tempo) no eixo horizontal e o fluxo de calor (em μV/mg ou mW/mg) no eixo vertical.
3.2.3 - Espectroscopia de Absorção no Infravermelho [90,91]

A técnica analítica de espectroscopia de absorção no infravermelho, fornece dados valiosos na pesquisa de intercalação em matriz de caulinita. A maioria das moléculas intercaladas encontra-se interagindo de alguma maneira com os grupamentos hidroxila da superfície gibsítica, normalmente por ligação de hidrogênio ou por interação dipolar. Estas interações podem alterar tanto a faixa de energia em que as bandas se encontram, quanto a intensidade destas absorções. Eventualmente, novas bandas podem ser observadas, devido a novas interações, entre o intercalado e a matriz. Alterações da geometria destes grupamentos -OH, ou de outras partes da matriz, também podem ser detectadas após as intercalações.

Bandas provenientes das moléculas intercaladas também são de fundamental importância, por demonstrarem se houve alguma alteração conformacional após seu alojamento na matriz.

A presença de água ou outras moléculas que possam existir co-intercaladas na matriz, juntamente com o intercalante, também pode ser determinada.

As medidas de absorção no infravermelho foram realizadas em um espectrômetro Bomem MB 100 FTIR. Os espectros foram obtidos entre 400 cm⁻¹ e 4000 cm⁻¹, com resolução de 2 cm⁻¹ e acumulação de 50 medidas, a fim de eliminar bandas espúrias e diminuir o ruído de fundo.
As amostras sólidas foram preparadas moendo-se KBr previamente seco (Merck, PA) com cerca de 3% (m/m) do analito, até homogeneização total, em gral de ágata e prensando-as em pastilhador específico, com auxílio de prensa hidráulica. As amostras líquidas foram medidas puras, dispersas entre as paredes de uma cela de NaCl.

3.2.4 - Microscopia Eletrônica de Varredura (MEV)

A microscopia eletrônica de varredura foi utilizada complementarmente, como técnica de caracterização morfológica. Ela mostrou-se especialmente útil nas elucidações da morfologia dos compostos caulinita/polímero, assim como para mostrar os danos causados à superfície dos cristalitos da matriz pelos processos de intercalação (e.g., no composto K/DMSO).

As amostras foram preparadas colocando-as em suspensão aquosa, pingando-se uma pequena quantidade desta diretamente em um porta-amostras próprio do microscópio, e secando-as ao ar. Após metalização com ouro, elas foram analisadas em um equipamento Philips XL30 operando a 30 kV.
4 - RESULTADOS E DISCUSSÕES

4.1 - Intercalação de DMSO e de CH₃COOK

Ambos os produtos de intercalação com DMSO e com Acetato de Potássio apresentaram-se como pós amarelo-pálidos, e foram caracterizados por difração de raios-X de pó (PRXD) e por análise térmica (TG/DSC). A figura 4.1 mostra os difratogramas de raios-X para a caulinita pura e para os compostos intercalados.

FIGURA 4.1: Difratograma de raios-X de pó da caulinita pura (a), do composto de intercalação K-DMSO (b) e do composto de intercalação K-Aacetato (c)

No difratograma de raios-X acima, K1, K2 e K3; D1, D2 e D3 representam os picos correspondentes às primeiras, segundas e
terceiras reflexões basais da caulinita pura e do composto com DMSO, respectivamente. A1, A2, A3 e A4 representam a série de reflexões basais até a quarta ordem para o composto intercalado com acetato de potássio.

O difratograma da caulinita pura mostra seus máximos característicos em $2\theta = 14,29^\circ$, em $2\theta = 28,97^\circ$ e em $2\theta = 44,11^\circ$, dentro do esperado para o mineral puro, utilizando-se radiação K_{α} do cobalto (14,38°, 29,07° e 44,30°) [23].

Após as intercalações, como esperado, observa-se uma mudança drástica nos padrões de difração. O pico em $2\theta = 14,29^\circ$ na caulinita original (primeira reflexão basal), é desviado para ângulos de reflexão menores nos intercalados, devido ao alojamento das moléculas intercalantes nos espaços interlamelares, o que causa o distanciamento entre as lamelas adjacentes da caulinita.

A ausência de picos finos e de grande intensidade, característicos de material de alta cristalinidade relativos ao acetato de potássio puro, no espectro do composto K-Acetato, demonstra que todo sal cristalino foi intercalado na caulinita, não estando presente como contaminante do produto (dentro do limite de detecção da técnica, que é de 3 a 5 %).

As distâncias interplanares basais (d) e expansões interplanares basais (Δd) dos compostos obtidos, com respeito à caulinita pura, obtidos dos difratogramas da figura 4.1 estão sumarizados na tabela 4.1.
O índice de intercalação obtido para o composto K-DMSO também encontra-se na tabela 4.1. Já o composto K-Acetato não pode ter seu índice de intercalação calculado pelo difratograma de raios-X, uma vez que a primeira reflexão basal da caulinita não intercalada coincide com a segunda reflexão basal do composto intercalado.

TABELA 4.1: Índices de Intercalação (II), distâncias interplanares basais (\(d\)) e expansões interplanares basais (\(\Delta d\)) da caulinita pura e dos compostos de intercalação precursors.

<table>
<thead>
<tr>
<th>Fase</th>
<th>II (%)</th>
<th>(d) (nm)</th>
<th>(\Delta d) (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>-</td>
<td>0,716</td>
<td>-</td>
</tr>
<tr>
<td>K-DMSO</td>
<td>83,5</td>
<td>1,121</td>
<td>0,405</td>
</tr>
<tr>
<td>K-Acetato</td>
<td>-</td>
<td>1,406</td>
<td>0,690</td>
</tr>
</tbody>
</table>

Uma outra possibilidade de cálculo do II poderia ser baseada na comparação das relações das intensidades dos picos K1 e K2 da caulinita pura e do pico K2 do composto K-Acetato. Com isso seria possível encontrar o valor aproximado do pico K1 no composto K-Acetato. No entanto esta técnica também não pode ser aplicada, uma vez que a relação K1 > K2 não se mantém no difratograma do composto K-Acetato (o pico K1+A2 do composto é menor que o pico K2 da caulinita pura). Apesar destas dificuldades, estima-se que o valor do II deva estar dentro da faixa de 70-85%, usualmente reportada na literatura.

Os valores de espaçamentos interplanares obtidos tanto para o composto K-DMSO quanto para o composto K-Acetato, estão
dentro do esperado, de acordo com o usualmente reportado na literatura: 1,12 nm para o K-DMSO [29] e 1,406 nm para o K-Aacetato [79].

Sabe-se que o índice de intercalação usualmente alcançado para o composto K-DMSO é da ordem de 90% ou mais, quando utiliza-se uma caulinita proveniente de vários depósitos nos Estados Unidos [23, 29]. Uma tentativa de explicação da menor intercalação obtida no experimento realizado (assim como em todas as intercalações subsequentes) baseia-se na presença de pequenas quantidades de SiO₂ amorfos nas bordas de alguns cristalitos da matriz. Estas pequenas quantidades de SiO₂ estariram como que "cimentando" várias lamelas pelas bordas, e dificultando grandemente ou até impedindo que elas possam distanciar-se, para a entrada das moléculas do intercalante. Como estaria em uma fase amorfa, esta sílica não seria detectada nos difratogramas de raios-X, e sua presença em quantidades muito pequenas não afetaria os resultados, já comentados, de análise química da matriz.

Do difratograma do composto intercalado com acetato de potássio, verifica-se que o material obtido tem uma cristalinidade mais baixa e uma desordem estrutural maior do que a caulinita original e mesmo do que o composto com DMSO. Este fato é verificado pela baixa intensidade relativa dos picos (se comparados com o ruído de fundo, que é sempre constante), pela sua maior largura e assimetria, se comparados
com os outros difratogramas, e pela região entre 22,5° e 27,7° caracterizada pela presença da formação em "dente-de-serra" descendente. Este é um fato que já deveria ser esperado, uma vez que o processo de intercalação do CH₃COOK é por moagem a seco (a intercalação se dá por reação química no estado sólido), que por si só já pode causar grande desestruturação do material. Mas além deste fator, e como já foi comprovado experimentalmente [94], a água adicionada durante a moagem, promove uma lavagem parcial do acetato intercalado e uma delaminação ou esfoliação da matriz, o que irá contribuir para a desordem do material.

A caulinita pura apresenta um comportamento térmico bastante característico, como pode ser verificado na figura 4.2. Inicialmente verifica-se um pico endotérmico centrado em 43°C, seguido por um processo endotérmico gradual, acompanhados de perda de aproximadamente 1,5% de massa, que corresponde à eliminação das águas de absorção e adsorção. Em seguida, verifica-se um pico endotérmico centrado em 527°C, acompanhado de uma perda de massa total de 13,5%, correspondente à perda dos grupos -OH (desidroxilação) da caulinita para a formação de metacaulinita. Há também um pico exotérmico em 993°C, sem variação de massa, característico da nucleação de cristais de mulita (Al₂O₃·2SiO₂). A perda de massa teórica da caulinita pura, de acordo com a reação

\[
\text{Al}_2\text{Si}_4\text{O}_{10}\text{(OH)}_4 \xrightarrow{\Delta} 2\text{Al}_2\text{O}_3 \cdot 2\text{SiO}_2 + 2\text{H}_2\text{O}
\]

(Equação [4.1]),
é de 13,96%, o que está em plena concordância com o valor encontrado de 13,5%, mostrando que a caulinita utilizada está livre de contaminantes orgânicos, ou voláteis até 950°C.

FIGURA 4.2: Curvas de análise térmica (TG e DSC), da amostra de caulinita pura. Atmosfera estática de ar, taxa de aquecimento de 5°C/min.

A análise térmica da fase K-DMSO é mostrada na figura 4.3. O composto de intercalação apresenta inicialmente um pico endotérmico centrado em 45°C com perda de massa de 0,7%, atribuído à saída de água de ad/absorção presente. Em seguida observa-se um pico endotérmico em 175°C com perda de massa de 8,8%, atribuído à eliminação do dimetilsufoxído. Finalmente verifica-se, em 509°C, um pico endotérmico com perda de 12,2% de massa, relativo à desidroxilação da matriz. Considerando-se que a concentração de caulinita pura restante era da ordem de 16,5% (dos dados de difração de raios-X, II = 83,5%), obtém-se
uma estequiometria de $K(DMSO)_{0.4020,02}$ para a fase intercalada. A barra de erro no cálculo da estequiometria, é estimada na ordem de 5%, para todas as intercalações. O resíduo final é de 79%, em boa concordância com a decomposição da caulinita residual e do material intercalado (valor teórico = 78,5%).

![Diagrama de análise térmica](image)

FIGURA 4.3: Curvas de análise térmica (TG e DSC), da amostra do composto K-DMSO. Atmosfera estática de ar, taxa de aquecimento de 5°C/min.

A temperatura de eliminação do DMSO é relativamente baixa (175°C), o que é até abaixo do seu ponto de ebulição normal (189°C). Como ela ocorre em um passo claramente endotérmico, o DMSO não sofre oxidação (queima, já que a medida foi realizada em atmosfera estática de ar), no entanto, apenas medidas de TG-MS poderiam revelar se ele é eliminado de forma intacta do sistema, ou se sofre alguma alteração.

A análise térmica do composto intercalado com acetato de potássio (figura 4.4) revela inicialmente um pico endotérmico centrado em 101°C, acompanhado de perda de 15,7% de massa, que
é atribuído à perda de água. Esta água é em grande parte, associada com o acetato de potássio (altamente higroscópico). Parte dela está nos espaços interlamelares, fazendo parte da esfera de hidratação dos cátions potássio ou estruturalmente comprometida, realizando uma ponte entre os oxigênios do acetato e as hidroxilas da matriz, por meio de ligações de hidrogênio (ver discussão sobre os espectros de FTIR, na sequência). Outra parte pode estar relacionada a eventuais quantidades de acetato cristalino não intercalado, aderido à superfície dos cristalitos ou mesmo livre no composto. [72-75, 79].

Figura 4.4: Curvas de análise térmica (TG e DSC), da amostra do composto K-Aacetato. Atmosfera estática de ar, taxa de aquecimento de 5°C/min. A curva tracejada é a expansão vertical da curva de DSC original em 4x.
A seguir, observa-se um pequeno pico endotérmico em 304°C, sem variação de massa, que é relativo à fusão do CH₃COOK (292°C no sal puro). Como o difratograma de raios-X do composto não mostra picos característicos do acetato cristalino não intercalado (há um limite de detecção de 3% a 5%), acredita-se que haja apenas uma pequena quantidade de acetato não intercalado, talvez até quase que, totalmente aderido à superfície dos cristalitos da matriz, e a este material seria atribuído o pico de fusão [75, 78]. Entretanto, também foi sugerido que uma parte do acetato intercalado funde nesta temperatura, causando desintercalação parcial do composto [79].

Na sequência, observa-se um grande pico exotérmico em 379°C acompanhado de uma perda de massa de 14,35%. Este passo é atribuído à superposição de dois fenômenos, a queima do acetato de potássio e o início do processo de desidroxilação da caulinita. Uma vez que a queima do acetato é altamente exotérmica, ela estaria mascarando a parte da desidroxilação simultânea, este fato já foi comprovado por análises de TG-MS [77, 78]. Este passo é então, seguido do final do processo de desidroxilação da matriz (tanto da caulinita intercalada quanto da não intercalada) agora não mais mascarado pelo processo exotérmico da queima do acetato. Ele é caracterizado por uma larga banda endotérmica entre 400°C e 548°C, onde ocorre uma perda de massa de 6,40%.
A literatura reporta um comportamento térmico diferente para a região de temperaturas acima de 550°C [78, 79], pois normalmente há o relato de bandas endotérmicas na região de 760°C e 870°C referentes à fusão e posterior decomposição do carbonato de potássio formado da decomposição do acetato, e que estão ausentes na amostra analisada. Há, no entanto, uma banda endotérmica muito larga e de pequenissima intensidade na região de 805°C a 975°C, com máximo em 920°C (visível somente na expansão da curva), possivelmente relacionada com a decomposição do K$_2$CO$_3$. Deve ser ressaltado que as duas fontes citadas obtiveram o composto por intercalação via reação da matriz com solução aquosa de acetato, e apesar do composto obtido apresentar mesmo difratograma de raios-X, seu comportamento térmico foi diferente. Este fato pode ser facilmente entendido se for levado em conta que na obtenção do composto por via úmida, há sempre um certo excesso de acetato não intercalado, uma vez que a solução de CH$_3$COOK altamente concentrada que é utilizada não pode ser totalmente removida, restando este excesso mesmo que a intercalação máxima já tenha sido obtida. Já no processo a seco, que foi aqui utilizado, espera-se que quase todo acetato adicionado seja intercalado, não restando como excesso cristalino, pois a reação é planejada com estequiométrias que visam excesso de caulinita em relação ao intercalante.
Não há consenso na literatura, sobre o composto final obtido após 900°C. Há, quase que certamente, uma mistura de K₂O, Al₂O₃ e SiO₂, em proporções que variam de acordo com a estequiometria inicial, mas a estrutura cristalina do produto ainda não foi estudada, sequer pode-se assumir que há apenas um produto final. O fato de haver esta estequiometria não determinada no resíduo final, aliada ao fato de que não foi possível calcular o II, a partir do difratograma de raios-X, faz com que não seja possível calcular a estequiometria aproximada do composto K-Aacetato.

Os espectros de absorção no infravermelho (FTIR) da caulinita pura e dos compostos K-DMSO e K-Aacetato, nas regiões entre 3800-2800 cm⁻¹ e entre 1800-400 cm⁻¹, são mostrados nas figuras 4.5 e 4.6, respectivamente, assim como as bandas da caulinita pura estão especificadas com suas atribuições, na tabela 4.2.

A análise dos espectros dos compostos de intercalação derivados da caulinita na região de 3800-2800 cm⁻¹ é particularmente interessante. Ela mostra as bandas de estiramento dos grupamentos OH da caulinita e também as bandas de estiramento dos grupamentos OH metilênicos do intercalante. As três bandas de maior frequência na região dos estiramentos OH são atribuídas às hidroxilas presentes na superfície da lamela, voltadas para o espaço interlamelar. A banda de mais baixa frequência, geralmente localizada em 3620 cm⁻¹ é atribuída
à hidroxila localizada no interior da estrutura da lamela (ver figura 1.9) [28, 29, 74-76, 79, 91, 95, 106].

![Diagrama de FTIR](image)

FIGURA 4.5: Espectros de FTIR da caulinita pura (a) e dos compostos K-DMSO (b) e K-Acetato (c), na região entre 3800 cm\(^{-1}\) e 2800 cm\(^{-1}\).

Usualmente reporta-se na literatura que a região dos estiramentos OH da caulinita é bastante afetada pela intercalação de moléculas que estabeleçam ligações de hidrogénio com a matriz [29, 54-56]. Estas novas interações implicam em uma diminuição da intensidade das três bandas relativas às hidroxilas da superfície, enquanto que a banda relativa à hidroxila interna, mantém sua intensidade inalterada.
FIGURA 4.6: Espectros de FTIR da caulinita pura (a) e dos compostos K-DMSO (b) e K-Acetato (c), na região entre 1800 cm\(^{-1}\) e 400 cm\(^{-1}\).

Entretanto, todas as discussões relativas às intensidades dos picos nos espectros de FTIR aqui descritos devem ser feitas com extremo cuidado e, na maioria das vezes, não revelam a realidade esperada. Isto deve ao fato das fases analisadas não serem puras, contendo ainda uma grande quantidade de caulinita não intercalada (em torno de 20%). Esta caulinita pura presente, tende a alterar as relações de intensidade das bandas sob análise, tornando quaisquer interpretações bastante difíceis.
TABELA 4.2: Bandas observadas no espectro de FTIR da caulinita pura, e suas respectivas atribuições [29, 70, 106]

<table>
<thead>
<tr>
<th>Banda e Número de Onda (cm⁻¹)</th>
<th>Atribuição</th>
<th>Banda e Número de Onda (cm⁻¹)</th>
<th>Atribuição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3694</td>
<td>O-H sup.: Estiramento</td>
<td>10 - 913</td>
<td>Al-O-H int.: Deformação</td>
</tr>
<tr>
<td>2 - 3667</td>
<td>O-H sup.: Estiramento</td>
<td>11 - 791</td>
<td>O-Al-O: Vibrações do retículo gisitaico</td>
</tr>
<tr>
<td>3 - 3652</td>
<td>O-H sup.: Estiramento</td>
<td>12 - 753</td>
<td>O-Al-O: Vibrações do retículo gisitaico</td>
</tr>
<tr>
<td>4 - 3619</td>
<td>O-H int.: Estiramento</td>
<td>13 - 697</td>
<td>O-Al-O: Vibrações do retículo gisitaico</td>
</tr>
<tr>
<td>5 - 1114</td>
<td>Si-O: Estiramento perpendicular</td>
<td>14 - 542</td>
<td>Si-O-Al: Estiramento</td>
</tr>
<tr>
<td>6 - 1102</td>
<td>Si-O: Estiramento perpendicular</td>
<td>15 - 469</td>
<td>SiO₄: Vibrações do retículo tetraédrico</td>
</tr>
<tr>
<td>7 - 1032</td>
<td>Si-O-Si: Estiramento no plano</td>
<td>16 - 430</td>
<td>SiO₄: Vibrações do retículo tetraédrico</td>
</tr>
<tr>
<td>8 - 1006</td>
<td>Si-O-Si: Estiramento no plano</td>
<td>17 - 411</td>
<td>SiO₄: Vibrações do retículo tetraédrico</td>
</tr>
<tr>
<td>9 - 935</td>
<td>Al-O-H sup.: Deformação</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Os resultados obtidos para o composto K-DMSO estão plenamente de acordo com o que já foi exaustivamente pesquisado [29, 40, 106], e são brevemente comentados na sequência.

Na região dos estiramentos das hidroxilas da matriz, observa-se que enquanto as bandas em 3694 cm⁻¹ e em 3619 cm⁻¹ mantêm-se praticamente inalteradas, a pequena banda em 3667 cm⁻¹ desaparece e uma nova e intensa banda em 3661 cm⁻¹ encobre parcialmente o restante da banda original em 3652 cm⁻¹. Duas novas bandas também são observadas em 3539 cm⁻¹ e 3502 cm⁻¹. Estas três novas bandas, são coletivamente atribuídas às ligações de hidrogênio estabelecidas entre as três hidroxilas.
da superfície da caulinita e o oxigênio do DMSO. Foi anteriormente sugerido [29], por análises de FTIR, que esta ligação entre a matriz e o DMSO ocorre pela interação apenas com as hidroxilas em 3694 cm\(^{-1}\). No entanto, estudos posteriores da estrutura cristalina do composto K-DMSO, realizados com o uso de difração de nêutrons, difração de raios-X e ressonância nuclear magnética no estado sólido de \(^{13}\)C, \(^{29}\)Si e \(^{27}\)Al, apresentaram resultados diferentes [107]. Estas análises indicaram que o DMSO está simultaneamente ligado às três diferentes hidroxilas da superfície da matriz pelo seu oxigênio, o que está plenamente de acordo com o surgimento de três novas bandas de absorção, após a intercalação. Também foi indicado que um dos grupamentos metilênicos do DMSO está “encaixado” no sítio ditrigonal da folha de silicato da lamela subjacente.

Em 3598 cm\(^{-1}\) foi observada uma pequena banda já atribuída anteriormente à presença de água na estrutura do composto K-DMSO, assim como em outros compostos preparados na presença de água (K-Formamida, K-Hidrazina) e que é característica também da fase caulinita hidratada [44, 48-50, 64, 69, 108]. Esta banda é então atribuída aos estiramentos das hidroxilas da caulinita que estão estabelecendo ligações de hidrogênio com a água. Entretanto, uma banda larga em ~1646 cm\(^{-1}\) indica a presença de água não ligada por pontes de hidrogênio, que deve estar adsorvida ou intercalada e na esfera de hidratação do
DMSO [64, 108]. A quantidade de água co-intercalada com o DMSO é, no entanto, pequena o suficiente para não ser claramente detectada nas análises de TG/DSC e para poder ser desprezada nos cálculos estequiométricos posteriores.

Alternativamente, o valor de 3598 cm⁻¹ é compatível com estiramentos de ligações Fe-O-H [91]. Sabendo-se que a caulinita utilizada (PP-0559) apresenta substituições estruturais isomórficas de Al por Fe numa extensão de 0,7% (em Fe₂O₃), é até possível imaginar a atribuição desta banda a estiramentos deste tipo. Não é, entretanto, lógico, nem tão pouco foi encontrada uma justificativa para que esta banda esteja presente no composto K-DMSO e não seja visível na caulinita pura (onde há, no entanto, um pequeno ombro), nem em seus outros derivados. Assim sendo, esta banda, assim como bandas similares nos compostos K-Acetato, K-Hidr, K-Anil e K-PANI, são atribuídas à interação com a água.

As bandas verificadas em 3020 cm⁻¹, 2935 cm⁻¹ e 2917 cm⁻¹ são referentes são estiramentos dos grupamentos C-H do DMSO, e também encontram-se em acordo com o anteriormente relatado [29, 106].

As demais regiões do espectro de FTIR do composto K-DMSO apresentam-se de acordo com o que já foi amplamente estudado para a intercalação do DMSO [29, 40, 106].

A análise do espectro de FTIR do composto K-Acetato, apesar de mostrar algumas diferenças para os espectros
normalmente reportados, evidenciou todas as principais alterações esperadas, resumidamente apresentadas na sequência. Eventuais diferenças devem ser esperadas devido ao preparo do composto ter sido por reação no estado sólido, e não pela reação com solução saturada de acetato de potássio.

A principal alteração do espectro do composto K-Acetato ocorreu na região dos estiramentos da hidroxila da matriz. Enquanto que as bandas em 3694 e 3619 cm\(^{-1}\) mantiveram-se praticamente inalteradas, a banda em 3667 cm\(^{-1}\) desapareceu e a banda em 3652 cm\(^{-1}\) foi grandemente diminuída. Os resultados normalmente encontrados mostram um desaparecimento quase total da banda em 3694 cm\(^{-1}\), no entanto, deve ser lembrado que a intercalação não se procedeu por completo, ainda restando na amostra analisada, uma certa quantidade de caulinita pura, que mascará a diminuição desta banda. Uma nova banda surgiu em 3601 cm\(^{-1}\), com um pequeno ombro em 3606 cm\(^{-1}\). Estudos detalhados por Espectroscopia Raman com Microsonda (Raman Microprobe Spectroscopy) do composto K-Acetato sintetizado à várias temperaturas diferentes [72, 73] sugerem que a fase com d próximo de 1,4 nm é devida a presença de água estabelecendo uma ponte entre o íon acetato e as hidroxilas da matriz. Estiramentos desta ligação entre a água e a matriz, seriam responsáveis por uma banda em 3606 cm\(^{-1}\). No entanto uma banda em 3600 cm\(^{-1}\) seria decorrente da interação direta do acetato
com a matriz, sem a presença de água, o que incorreria em uma fase com d próximo de 1,1 nm.

A fase aqui descrita foi preparada com a adição de pequenas alíquotas de água, sua presença sendo claramente verificada pelos resultados de análise térmica e pela larga banda característica, na região de 1450 cm\(^{-1}\). Esta água pode estar presente em pequena quantidade estabelecendo tais pontes entre o acetato e a matriz, e fazendo com que haja uma expansão interplanar da ordem de 1,4 nm. Este fato seria, então, responsável pelo pequeno ombro observado em 3606 cm\(^{-1}\). No entanto, a banda maior ocorre em 3601 cm\(^{-1}\), com isso seria possível admitir que a maior parte da interação entre o acetato e a matriz se dá sem a presença da água, o que causaria uma expansão interplanar cerca de 0,25 nm menor do que a observada. Contudo, a pequena quantidade de moléculas que apresentam a ponte com a água seguram e estrutura com um d maior. Todavia, esta tentativa de explicação ainda necessita de maiores estudos, com o possível auxílio de outras técnicas, que corroborem com estes resultados, a fim de ser tomada como uma real elucidação da estrutura do composto intercalado.

Apesar desta discussão, e do grande número de artigos publicados sobre este composto, não há um consenso geral na literatura sobre a estrutura do composto de intercalação da caulinita com acetato de potássio. A presença da água no interior da estrutura é tida quase como certa, mesmo nos
compostos ditos "secos" [79]. No entanto, a sua localização e a presença e eventual estrutura de "pontes" de água entre o acetato e a matriz, são questões ainda não totalmente elucidadas. É geralmente aceito que o cátion potássio está encaixado (quase comprimido) nos sitios ditrigonais das folhas octaédricas de silicato, que possuem cerca de 0,232 nm de diâmetro, enquanto que o cátion K⁺ possui diâmetro de 0,233 nm [73, 74, 79].

Outra alteração característica observada no espectro do composto K-Aacetato foi a presença de bandas relativas ao íon acetato. São observadas uma pequena banda em 1344 cm⁻¹, atribuída à deformação simétrica do grupamento CH₃, uma banda em 1415 cm⁻¹, relativa ao estiramento simétrico da carboxila, e duas bandas, quase totalmente resolvidas, em 1563 cm⁻¹ e 1604 cm⁻¹, relativas aos estiramentos assimétricos da carboxila.

A figura 4.7 mostra uma micrografia do composto K-DMSO realizada por microscopia eletrônica de varredura (MEV). A imagem revela claramente danos morfológicos sofridos pelos cristalitos da matriz após o processo de intercalação. Se comparados com a caulinita original (figuras 1.7 e 1.8), os cristalitos apresentam cantos e bordas um pouco menos definidos, mais arredondados. Mas, principalmente, muitas fissuras nas superfícies basais também são observadas, caracterizando um craqueamento da superfície dos cristalitos maiores em unidades menores.
FIGURA 4.7: Micrografia do composto K-DMSO.

Embora ao menos parte desses danos (fissuras) superficiais pudessem ser causados pelo feixe de elétrons durante a captura da imagem, o processo de intercalação deve ser tomado como o principal fator de desordem na matriz, uma vez que mesmo os resultados da difração de raios-X (figura 4.1) mostram que o composto K-DMSO tem uma cristalinidade um pouco inferior à da caulinita pura.

Estes resultados deveriam der esperados, uma vez que a síntese do composto foi um tanto drástica, envolvendo tratamento em banho de ultra-som por uma hora e aquecimento por 20 dias juntamente com o agente intercalante, condições que foram, certamente, as maiores responsáveis pela degradação superficial dos cristalitos.
4.2 - Intercalação de NMP

O produto da reação do K-DMSO com a NMP foi obtido como um pó amarelo-válido. A análise de difração de raios-X deste composto foi feita com o produto seco a 60°C por 24h, a fim de obter-se o índice de intercalação aproximado da reação. Os resultados estão na figura 4.8. As três primeiras reflexões basais do composto intercalado (N1, N2 e N3), são encontradas em ângulos (2\(\theta\)) de 8,20°, 16,59° e 25,20°, respectivamente, o que caracteriza uma distância interplanar basal de 1,231 nm e uma expansão interplanar basal de 0,514 nm. O índice de Intercalação (II) calculado com base na intensidade de N1 e K1, foi de 85%.

FIGURA 4.8: Difratograma de raios-X de pó da caulinita pura (a), do composto de intercalação K-DMSO (b) e do composto de intercalação K-NMP (c)
A total ausência de picos relativos ao composto K-DMSO sugere uma completa substituição das moléculas de dimetilsufóxido pelas de NMP. Observa-se em 20 = 21° um pequeno pico relativo a uma fase não identificada, pois não é atribuível a qualquer fase possivelmente presente. Constatou-se também, que a pré-expansão da matriz com o DMSO é indispensável para a intercalação da NMP. Este fato pode ser comprovado pela tentativa de intercalação de NMP diretamente na caulinita pura. Neste caso, mesmo após 7 dias de reação, não foi observada mudança alguma na matriz, como foi evidenciado pelo difratograma de raios-X de tal amostra [92].

As curvas da análise térmica (TG e DSC) do composto K-NMP, são mostradas na figura 4.9. Para estas análises foi utilizada uma amostra do composto seca a 150°C por 24h.

Estas análises revelam, inicialmente, um pico endotérmico centrado em 37°C, acompanhado de perda de 0,5% de massa, atribuído a perda de umidade da amostra. Em seguida há um outro pico endotérmico em 329°C, sem perda de massa correspondente, apesar de estar em uma região onde há uma pequena e gradativa perda de massa de cerca de 1%. Não foi encontrada uma explicação certa para este fenômeno. Eventualmente ele pode ser devido a algum rearranjo estrutural das moléculas de NMP na matriz. Esta hipóteses poderia ser testada por uma análise de difração de raios-X em equipamento com controle de temperatura. Neste caso, quando a amostra
atinsse a temperatura de 329°C, seu padrão de difração poderia ser diferente, devido ao rearranjo das moléculas que sustentam a expansão interlamelar da matriz.

FIGURA 4.9: Curvas de análise térmica (TG e DSC), da amostra do composto K-NMP. Atmosfera estática de ar, taxa de aquecimento de 5°C/min.

Na sequência, a análise térmica mostra um pico exotérmico em 427°C, que é acompanhado de uma perda de massa de 9,3% até 484°C (incluindo a perda de 1% discutida anteriormente) e um pico endotérmico em 552°C, com perda de 13,0% de massa. O primeiro é atribuído à eliminação e queima do material orgânico intercalado, enquanto que o segundo corresponde à desidroxilação da matriz de caulinita. Obteve-se um resíduo final de 78,2%.
Com base nos resultados acima, pode-se atribuir uma estequiometria de $K(NMP)_{0.3810.02}$ para o composto obtido. Este resultado mostra que a substituição do DMSO pela NMP é quase quantitativa, uma vez que a estequiometria do composto precursor era $K(DMSO)_{0.40}$.

A ausência de um pico endotérmico próximo de 175°C (temperatura de eliminação do DMSO no composto K-DMSO), é outro indicativo de que a substituição foi quantitativa, não restando DMSO no composto final.

Após a secagem do material a 150°C por 24h, verificou-se pelo difratograma de raios-X (não mostrado) que houve uma diminuição do índice de intercalação de 85% para 68.8%. No entanto, a amostra seca a 150°C foi utilizada nas análises térmicas e de FTIR a fim de garantir que não havia mais contaminação por NMP livre, não intercalada, que poderia interferir nos resultados. Mesmo havendo diminuído o II, a desintercalação do composto não alterou sua estequiometria, tendo havido apenas regeneração parcial da caulinita pura, como foi mostrado pela comparação dos difratogramas e das análises térmicas das duas amostras, não mostrados.

A temperatura de eliminação da matéria orgânica (431°C), é bem mais elevada que a do seu precursor K-DMSO (175°C) e mesmo que de outros compostos semelhantes [71, 78]. Esta notável estabilidade térmica é comparável às exibidas pelos derivados organo-funcionalizados da caulinita, aonde os
grupamentos orgânicos estão covalentemente ligados à matriz [57]. O composto K-NMP chega a ser tão estável termicamente que na temperatura em que a NMP é eliminada ela sofre oxidação (queima), caracterizando um efeito exotérmico na curva de DSC, em oposição à saída do DMSO, que é eliminado sem oxidação e por um fenômeno endotérmico.

Os espectros de FTIR do composto K-NMP, da caulinita pura e da NMP pura, na região de 4000 cm\(^{-1}\) a 2700 cm\(^{-1}\) são mostradas na figura 4.10. Os picos observados no espectro do composto K-NMP, assim como sua tentativa de atribuição, estão detalhados na tabela 4.3.

FIGURA 4.10: Espectros de FTIR da caulinita pura (a), da NMP pura (b) e do composto K-NMP (c), na região entre 4000 cm\(^{-1}\) e 2700 cm\(^{-1}\).
A análise do espectro do composto K-NMP na região dos
estiramentos da hidroxila, não mostra diferenças visíveis
para a caulinita pura. Também não são observadas novas bandas,
atribuíveis à ligações de hidrogênio estabelecidas entre a
molécula orgânica e a matriz. Devido à elevada estabilidade
térmica observada para este composto (427°C), seria de se
esperar a verificação de fortes interações por ligação de
hidrogênio com o consequente aparecimento da tais bandas,
assim como a diminuição da intensidade das bandas originais,
especialmente a localizada em 3694 cm⁻¹ como na caso do
composto K-DMSO e K-Bz (ver discussão adiante). Face à esta
situação, duas hipótese podem ser formuladas, a primeira seria
que estas fortes interações realmente estão presentes, mas por
algum motivo desconhecido, não causam o aparecimento de novas
bandas, nem em pequena intensidade, no espectro de FTIR, o que
é bastante improvável.

Uma outra hipótese então, seria imaginar que a molécula de
NMP pode estar estruturalmente arranjada entre as lamelas da
caulinita de uma maneira extremamente favorável, possivelmente
de alguma maneira até "encaixada" nos sitios ditrigonais da
folha de silicato (como no caso do cátion potássio no composto
K-Acetato [73]), ou nas vacâncias entre as hidroxilas da folha
gibsítica (como no caso do composto caulinita/piridina [50]).
Estes fatores estruturais, corroborariam então para a alta
estabilidade da molécula de NMP no interior da matriz de caulinita.

A fim de esclarecer este problema, estudos estruturais mais detalhados, como espectroscopia Raman e espectroscopia de ressonância nuclear magnética no estado sólido, além de modelagens matemáticas da estrutura do composto, devem ainda ser realizados.

TABELA 4.3: Bandas observadas no espectro de FTIR do composto K-NMP, e suas respectivas atribuições

<table>
<thead>
<tr>
<th>Banda e Número de Onda (cm⁻¹)</th>
<th>Atribuição</th>
<th>Banda e Número de Onda (cm⁻¹)</th>
<th>Atribuição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3696</td>
<td>K: 3694 -O-H sup.</td>
<td>14 - 1215</td>
<td>NMP: 1228</td>
</tr>
<tr>
<td>2 - 3669</td>
<td>K: 3667 -O-H sup.</td>
<td>15 - 1154</td>
<td>NMP: 1173</td>
</tr>
<tr>
<td>3 - 3652</td>
<td>K: 3652 -O-H sup.</td>
<td>16 - 1100</td>
<td>K: 1106 Si-O-Si</td>
</tr>
<tr>
<td>4 - 3621</td>
<td>K: 3619 -O-H int.</td>
<td>17 - 1030</td>
<td>K: 1032 Si-O-Si</td>
</tr>
<tr>
<td>5 - 3458</td>
<td>H₂O livre</td>
<td>18 - 936</td>
<td>K: 935 Al-O-H sup.</td>
</tr>
<tr>
<td>7 - 2923</td>
<td>NMP: 2942</td>
<td>20 - 791</td>
<td>K: 791 O-Al-O</td>
</tr>
<tr>
<td>8 - 2852</td>
<td>NMP: 2879</td>
<td>21 - 752</td>
<td>K: 753 O-Al-O</td>
</tr>
<tr>
<td>9 - 1657</td>
<td>H₂O livre</td>
<td>22 - 696</td>
<td>K: 697 O-Al-O</td>
</tr>
<tr>
<td>10 - 1452</td>
<td>NMP: 1441, 1459</td>
<td>23 - 544</td>
<td>K: 542 Al-O-Si e/ou</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NMP: 564</td>
</tr>
<tr>
<td>11 - 1405</td>
<td>NMP: 1404</td>
<td>24 - 471</td>
<td>K: 469 SiO₄ e/ou</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NMP: 471</td>
</tr>
<tr>
<td>12 - 1383</td>
<td>não atribuído</td>
<td>25 - 427</td>
<td>K: 430 SiO₄</td>
</tr>
<tr>
<td>13 - 1239</td>
<td>NMP: 1263</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

OBS: Ver Tabela 4.2 para detalhamento das atribuições da caulinita.

É interessante notar, na região de 3050cm⁻¹ a 2800cm⁻¹, a separação que ocorre entre as bandas não resolvidas dos estiramentos CH simétricos e assimétricos dos grupamentos
metilênicos da molécula de NMP. Após a intercalação, possivelmente devido a restrições estéricas no interior das lamelas, estes estiramentos, que antes tinham praticamente a mesma frequência de absorção, passam a ter uma maior separação de energia entre eles. Com isso, a banda mal resolvida da NMP em 2942 cm\(^{-1}\) (mesmo em um espectro realizado com a NMP em grande diluição), relativa aos estiramentos assimétricos, separa-se nas bandas em 2956 cm\(^{-1}\) e em 2923 cm\(^{-1}\) no composto K-NMP. Da mesma maneira, a banda relativa ao estiramento simétrico, que era localizada em 2879 cm\(^{-1}\) tem sua frequência diminuída para 2852 cm\(^{-1}\) no composto. Estas observações são consistentes com as que já foram feitas para a intercalação de etileno-glicol e seu polímero na caulinita [40, 54], assim como para a intercalação de PEO em montmorilonitas [93].
4.3 - Intercalação de Benzamida

O composto de intercalação com a benzamida foi obtido como um pó amarelado claro. Os resultados da análise de difração de raios-X deste composto são mostrados na figura 4.11.

![Diagrama de difração de raios-X](image)

FIGURA 4.11: Difratoograma de raios-X de pó da benzamida pura (a), do composto K-Bz (b), do composto K-DMso (c), e da caulinita pura (d).

No difratograma, as reflexões basais do composto caulinita-benzamida, encontram-se identificadas por KBz\(n\), onde \(n\) não se refere a qualquer indexação dos picos, mas apenas a sua ordem na sequência de reflexões basais. O mesmo aplicando-se para os outros compostos. As seis primeiras reflexões basais do composto K-Bz encontram-se respectivamente, em
ângulos (2\theta) de 7,12°, 14,29°, 21,66°, 28,99°, 36,59° e 44,10°. Estes valores caracterizam uma distância interplanar basal de 1,429 nm e uma expansão interplanar basal de 0,714 nm, em relação à caulinita pura.

Do difratograma percebe-se que a primeira reflexão basal do composto K-Bz é bastante distinta dos seus precursores. No entanto, sua segunda reflexão basal coincide com a primeira reflexão basal da caulinita pura, não intercalada, ainda restante no material. Este fato impossibilita o cálculo do \(\text{II} \) diretamente da relação KBzl/KI, como seria normalmente feito.

No entanto, caso este difratograma seja normalizado em relação ao do K-DMSO, pode-se encontrar um \(\text{II} \) aproximado. Para tanto supõe-se equivalentes a relação de intensidade entre os picos DL e KI, no difratograma do K-DMSO. Deste modo, com o valor da intensidade de KBzl no difratograma do K-Bz, pode-se encontrar o valor da intensidade de KI no difratograma do K-Bz. Tendo em mãos este valor, chega-se a um \(\text{II} = 73\% \) para o composto K-Bz. Contudo, este é um valor estimado e que não deve ser tomado com total certeza, uma vez que a suposição de que a relação de intensidades entre DL/KI e KBzl/KI ou seja, entre precursor e produto, não é necessariamente válida.

Assim como no composto K-NMP, aqui também, observa-se uma total ausência de picos relativos aos precursores K-DMSO e benzamina no composto final. Apesar da benzamina restante no meio reacional ter sido eliminada com sucesso pela lavagem com
acetona, este fato não é indicativo de uma total substituição das moléculas de DMSO pelas de benzamida, pois com um aquecimento de 140°C por 4 dias, seria de se esperar que grande parte do DMSO fosse desintercalado do composto K-DMSO (ver figura 4.3). Além de poder ter havido a lavagem de eventuais quantidades de DMSO restante pela acetona. No entanto, houve a substituição do DMSO por benzamida, o que pode indicar que a reação se processou logo no início do período de aquecimento.

Verificou-se que a reação de controle, feita com a caulinita pura e a benzamida, não resultou em composto algum (resultados não mostrados), conclui-se então, que a pré-expansão com o DMSO, assim como no caso da intercalação com NMP, é imprescindível para o acesso das moléculas de benzamida aos espaços interlamelares da matriz de caulinita.

A dimensão molecular da benzamida, medida entre o hidrogênio aromático p-substituído e o átomo de oxigênio da carbonila, foi determinado como 0,77 nm usando um programa de modelagem (Hyperchem, versão 4.5). Então, baseado na expansão interplanar basal de 0,714 nm do composto K-Bz, parece correto afirmar que cada hidroxila da caulinita que estiver interagindo diretamente com uma molécula de benzamida, o fará num ângulo de 68° em relação ao plano da lamela da matriz. Não se pode descartar a possibilidade de que algumas moléculas estejam com ângulos de interação diferentes. No entanto este ângulos deveriam ser menores que 68° pois caso contrário, a
expansão interplanar teria que assumir valores maiores. De fato, o valor de 68° é compatível com a orientação com ângulos entre 50° e 75° que é normalmente assumida para os grupos hidroxila da superfície da caulinita [29].

As curvas de análise térmica do composto K-Bz (TG e DSC), são mostradas na figura 4.12. Primeiramente observa-se um pequeno pico endotérmico em 50°C com perda de 0,5%, atribuído a perda de água adsorvida/absorvida. Após, há a presença de uma série de fenômenos endotérmicos com início em uma pequena banda com máximo em 65°C. Esta banda é seguida de outros máximos em 140°C, 234°C e 314°C. A estes fenômenos endotérmicos todos, que em conjunto, são responsáveis por uma perda de massa de 9,6% (em matéria seca) é atribuída a saída das moléculas de benzamida do interior da matriz. Como todos os processos são endotérmicos, é possível dizer que não houve queima do material orgânico, no entanto, a única prova real de que as moléculas de benzamida não estariam sofrendo nenhum tipo de alteração com sua expulsão da matriz só seria possível com estudos detalhados de TG/MS.

A desidroxiilação da matriz é observada com o pico endotérmico em 524°C, acompanhado de perda de 12,6% de massa, enquanto que a cristalização dos óxidos é observada em 973°C. Esta perda de 12,6% de massa na desidroxiilação implica teoricamente num resíduo final de 77,8%, que está de pleno
acordo com os 77,6% de resíduo final obtido após a calcinação acima de 1000°C.

FIGURA 4.12: Curvas de análise térmica (TG e DSC), da amostra do composto K-Bz. Atmosfera estática de ar, taxa de aquecimento de 5°C/min.

A ausência de um eventual pico de fusão da benzamida (na região de 130°C) demostrou que não havia excesso deste composto no derivado intercalado. Sabendo que a matéria orgânica representa 9,6% em massa do composto seco (perda de massa até 350°C), e levando-se em consideração o valor de II = 73%, obtido pelo método indireto anteriormente citado, pode-se atribuir a estequiometria de $\text{K(Bz)}_{0.3220.02}$ à fase intercalada. Todavia é importante salientar que como há uma certa imprecisão no valor utilizado do II, este valor da estequiometria obtido pode ser ligeiramente diferente do real.
No entanto, pode-se justificar uma estequiometria mais baixa em relação ao precursor ou ao intercalado com NMP (K(DMSO)$_{0.40}$ e K(NMP)$_{0.39}$) pelo próprio método de obtenção da fase K-Bz: A reação processou-se por fusão da benzamida a 140°C por 4 dias, além deste fato poder promover certa eliminação do DMSO intercalado, regenerando caulinita pura, uma elevada agitação molecular preveniria uma intercalação nas mesmas proporções de uma que se processasse à temperatura ambiente.

As medidas de TG/DSC também sugerem que a substituição do DMSO pela benzamida foi quantitativa. Este fato é suportado pela ausência de um pico endotérmico na região de 189°C, que corresponderia à eliminação do DMSO da matriz da caulinita. Entretanto, apenas a ausência deste pico não é suficiente para comprovar a ausência do DMSO no composto K-Bz, uma vez que a eliminação de eventuais resíduos de DMSO dificilmente ocorreria na mesma temperatura característica do composto K-DMSO e que na região esperada para o pico, observa-se o início de um fenômeno endotérmico atribuído à saída da benzamida.

As medidas de FTIR da caulinita pura, da benzamida pura e do composto K-Bz, nas regiões de 3800-3000 cm$^{-1}$ e 1750-1350 cm$^{-1}$, são mostradas nas figuras 4.13 e 4.14, respectivamente. As tentativas de atribuição das bandas do composto K-Bz são mostradas na tabela 4.4.
FIGURA 4.13: Espectros de FTIR da caulinita pura (a), do composto K-Bz (b) e da benzamida pura (c), na região de 3800 cm\(^{-1}\) a 3000 cm\(^{-1}\).

No entanto, novas bandas, não atribuíveis nem à caulinita ou benzamida puras e nem tampouco ao precursor K-DMSO foram claramente detectadas no espectro do composto K-Bz. Na região dos estiramentos das hidroxilas (3800-3400 cm\(^{-1}\)), foram
detectadas duas novas bandas finas em 3647 cm⁻¹ e em 3598 cm⁻¹ e uma banda um pouco mais larga, de baixa intensidade, em 3549 cm⁻¹. A banda em 3647 cm⁻¹ encobre parcialmente a banda original da caulinita em 3652 cm⁻¹, que aparece como um pequeno ombrô. A pequena banda da caulinita em 3667 cm⁻¹ praticamente desapareceu, também pode ser verificado que a relação de intensidades entre as bandas em 3694 cm⁻¹ e 3619 cm⁻¹ permanece praticamente a mesma após a intercalação, com pequeno decréscimo da primeira.

Estas três novas bandas verificadas, são características da formação de ligações de hidrogênio entre a carbonila da benzâmida e as três diferentes hidroxilas da caulinita (C-O·H-O-Al), de acordo com o que já foi reportado para a intercalação de formamida [68, 69, 108], acetamida [31], acrilamida e poliacrilamida [38] e polivinilpirrolidona [39] na caulinita.

É interessante notar a estranha similaridade desta região do espectro do K-Bz com o espectro da caulinita hidratada (ver figura 4.29), mostrando, quase identicamente, bandas em 3599 cm⁻¹ e em 3549 cm⁻¹ (a primeira delas também presente no precursor K-DMSO). No entanto, não há bases para imaginar que tais bandas, lá atribuídas à água intercalada, tenham a mesma atribuição aqui no composto K-Bz, mesmo sabendo que havia água co-intercalada com o DMSO no composto precursor. Este fato, pode ser entendido por vários motivos: A síntese do composto
K-Bz realizou-se à 140°C por 4 dias, sem a adição de água. Estas condições de síntese, já são suficientes para certificar que qualquer quantidade de água presente originalmente no composto K-DMSO ou mesmo na benzamida, fossem totalmente eliminadas. Qualquer água presente no composto K-BZ deve ser, então, oriunda do pós-síntese: da acetona utilizada na lavagem ou da umidade atmosférica. Desta maneira, é difícil imaginar que uma quantidade tão pequena de água (0,5% segundo a análise de TG/DSC), proveniente de fontes tão ínfimas e improváveis de serem capazes de intercalação, sejam responsáveis por duas bandas relativamente intensas no espectro de FTIR. Alem disso, há o fato das mesmas bandas já terem sido encontradas quando da intercalação da caulinita com outras moléculas similares (acetamida, polivinilpirrolidona e acrilamida/poliacrilamida).

Há também, a presença de uma quarta nova banda em 3472 cm⁻¹. Esta banda é característica da formação de ligações de hidrogénio entre o grupamento NH₂ da benzamida e os oxigéniros da folha de sílica da caulinita, analogamente ao reportado para a intercalação da formamida e da acetamida na caulinita (N-H···O-Si). Estas bandas, relativas ao estiramentos das ligações N-H são sempre observadas aos pares (estiramentos simétricos e assimétricos), como no espectro do composto K-Bz apenas a banda em 3472 cm⁻¹ foi observada, é possível que a segunda banda esteja superposta à banda larga e mal definida em 3382 cm⁻¹, que é devida, fundamentalmente à estiramentos de
ligações N-H da benzamida, não comprometidos com ligações de hidrogênio com a caulinita.

Desta maneira, têm-se as moléculas de benzamida interagindo por ligações de hidrogênio tanto pela carbonila quanto pelo grupamento NH₂, com as duas faces das lamelas voltadas para o espaçamento interlamelar, formando uma “ponte” entre duas lamelas subjacentes. Estudos estruturais mais detalhados deste composto ainda são necessários a fim de demonstrar o real arranjo tridimensional da benzamida no interior da caulinita, a fim de permitir tais interações, e ser compatível com os dados de PXRD.

FIGURA 4.14: Espectros de FTIR da caulinita pura (a), do composto K-Bz (b) e da benzamida pura (c), na região de 1750 cm⁻¹ a 1350 cm⁻¹.
Seria de se esperar que a análise do espectro do composto K-Bz na região entre 1750 e 1350 cm\(^{-1}\) fosse especialmente útil na confirmação da dupla interação das moléculas de benzamida com a caulinita. A benzamida apresenta duas bandas em 1660 e em 1624 cm\(^{-1}\), características de modos vibracionais do grupamento C=O. Após a intercalação, a banda em 1660 cm\(^{-1}\) praticamente desaparece, restando como um pequeno ombro na outra, que foi deslocada para 1637 cm\(^{-1}\). Estas grandes alterações confirmam que os grupamentos C=O estão envolvidos em ligações de hidrogênio com as hidroxilas da caulinita.

Entretanto, as bandas de amida I, resultantes da mistura ressonante dos grupos N-H e C=O na benzamida pura, localizadas em 1603 e 1578 cm\(^{-1}\), não sofreram grandes alterações. O composto K-Bz apresentou tais bandas em 1605 e 1573 cm\(^{-1}\), respectivamente. De acordo com o que foi relatado para a intercalação da acetamida [31], seria de se esperar que tais bandas desaparecessem devido à interação dos grupamentos N-H com os grupamentos O-Si da caulinita, com a perda das estruturas ressonantes da benzamida pura. Deveria também ser observada uma nova banda, bem resolvida e intermediária entre estas, característica da deformação dos grupamentos NH\(_2\) envolvidos com ligação de hidrogênio com o oxigênio da caulinita.
TABELA 4.4: Bandas observadas no espectro de FTIR do composto de intercalação K-Bz, e suas respectivas atribuições.

<table>
<thead>
<tr>
<th>Banda e Número de Onda (cm⁻¹)</th>
<th>Atribuição</th>
<th>Banda e Número de Onda (cm⁻¹)</th>
<th>Atribuição</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 - 3696</td>
<td>K: 3694 -O-H</td>
<td>16 - 1300</td>
<td>Bz: 1298</td>
</tr>
<tr>
<td>2 - 3670</td>
<td>K: 3667 -O-H</td>
<td>17 - 1106</td>
<td>K: 1102 Si-O</td>
</tr>
<tr>
<td>3 - 3647</td>
<td>O-H...O=C</td>
<td>18 - 1083</td>
<td>Bz 1073</td>
</tr>
<tr>
<td>4 - 3619</td>
<td>K: 3619 -O-H</td>
<td>19 - 1057</td>
<td>Bz 1073</td>
</tr>
<tr>
<td>5 - 3598</td>
<td>O-H...O=C</td>
<td>20 - 1034</td>
<td>K: 1032 Si-O-Si</td>
</tr>
<tr>
<td>6 - 3549</td>
<td>O-H...O=C</td>
<td>21 - 1007</td>
<td>K: 1006 Si-O-Si</td>
</tr>
<tr>
<td>7 - 3472</td>
<td>N-H...O-Si</td>
<td>22 - 938</td>
<td>K: 935 Al-O-H</td>
</tr>
<tr>
<td>8 - 3382</td>
<td>Bz: 3367 νₐr(NH₂)</td>
<td>23 - 914</td>
<td>K: 913 Al-O-H</td>
</tr>
<tr>
<td></td>
<td>e/ou N-H...O-Si</td>
<td></td>
<td>Bz: 792 e/ou</td>
</tr>
<tr>
<td>9 - 3180</td>
<td>Bz: 3173 ν₁ₘ(NH₂)</td>
<td>24 - 790</td>
<td>K: 791 O-Al-O</td>
</tr>
<tr>
<td>10 - 1660</td>
<td>Bz: 1660 δ(C=O)</td>
<td>25 - 754</td>
<td>K: 753 O-Al-O</td>
</tr>
<tr>
<td>11 - 1637</td>
<td>Bz: 1624 δ(C=O)</td>
<td>26 - 692</td>
<td>K: 697 O-Al-O</td>
</tr>
<tr>
<td>12 - 1605</td>
<td>Bz: 1603 (amidal)</td>
<td>27 - 548</td>
<td>K: 542 Al-O-Si</td>
</tr>
<tr>
<td>13 - 1573</td>
<td>Bz: 1578 (amidal)</td>
<td>28 - 472</td>
<td>K: 469 SiO₄</td>
</tr>
<tr>
<td>14 - 1447</td>
<td>Bz: 1449</td>
<td>29 - 431</td>
<td>K: 430 SiO₄</td>
</tr>
<tr>
<td>15 - 1407</td>
<td>Bz: 1404 (amida2)</td>
<td>30 - 411</td>
<td>Bz: 414 e/ou</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>K: 411 SiO₄</td>
</tr>
</tbody>
</table>

OBS: Ver Tabela 4.2 para detalhamento das atribuições da caulinita.

Estas discrepâncias com o comportamento esperado devem ser resultantes de uma interação de apenas parte dos grupamentos NH₂ com as hidroxilas da matriz, que faz com que a quantidade de benzamida que não estabelece a "ponte" entre as lamelas da caulinita acabe por mascarar os resultados finais. Todavia, estas interações N-H...O-Si estão suficientemente comprovadas pela presença da banda em 3472 cm⁻¹, descrita anteriormente, e que é facilmente detectável por ocorrer em uma região do
espectro sem absorções nem da caulinita nem da benzamida. O próprio arranjo estéreo da benzamida nos espaçamentos interlamelares da caulinita deve ser o responsável pela interação parcial dos grupamentos NH₂ com a matriz. Estudos detalhados, incluindo modelagens matemáticas deste composto, poderão revelar se estas proposições estão corretas.

Os grupamentos hidroxila da caulinita apresentam duas bandas de deformação em 936 cm⁻¹ e 913 cm⁻¹, sendo a primeira delas relativa às hidroxilas externas e a segunda à hidroxila interna. Do espectro de FTIR nessa região percebe-se que, mesmo com a contribuição da caulinita pura, a intensidade da banda relativa às hidroxilas externas diminui em relação à banda da hidroxila interna, após a intercalação. Este fato é ainda mais uma evidência de que a molécula intercalada está diretamente associada à matriz por ligações de hidrogênio.
4.4 - Intercalação de PEO e de PHB

Os compostos K-PEO e K-PHB foram obtidos como pé amarelo escuro e marrom claro, respectivamente. Os resultados da difração de raios-X destes compostos é mostrada na figura 4.15.

No difratograma, as reflexões basais do composto K-PEO encontram-se designadas por \(P_n\), e as do composto K-PHB por \(H_n\), onde \(n\) refere-se apenas à ordem em que as reflexões ocorrem no difratograma, e não a qualquer indexação do pico.

FIGURA 4.15: Difratogramas de raios-X da caulinita pura (a), do composto K-DMSO (b), do K-PEO (c) e do K-PHB (d).
As três primeiras reflexões basais do composto K-PEO encontram-se respectivamente, em ângulos (2θ) de 9,171°, 18,405° e 27,910°. Já no composto K-PHB os ângulos são de 8,720°, 17,491° e 26,641°. Estes valores conferem distâncias interplanares basais e expansões interplanares basais de 1,116 nm e 0,399 nm para o composto K-PEO e 1,170 nm e 0,453 nm para a fase K-PHB (ver tabela 4.5). Tais magnitudes de valores de expansão interplanar estão de pleno acordo com o que já foi extensivamente reportado para intercalações de monocamadas achatadas de unidades oxietilênicas (poliméricas ou não) em várias matrizes lamelares. É o caso das expansões de 0,37-0,41 nm para a intercalação de poli(etilenoglicol) em caulinita, 0,37 nm para a intercalação do etilenoglicol na vermiculita, e 0,45 nm para o PEO intercalado no V₂O₅, por exemplo [40].

TABELA 4.5: Distâncias interplanares basais (d), expansões interplanares basais (Δd) e índices de intercalação (II) dos compostos PEO e K-PHB.

<table>
<thead>
<tr>
<th>Fase</th>
<th>d (nm)</th>
<th>Δd (nm)</th>
<th>II (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-PEO</td>
<td>1,116</td>
<td>0,399</td>
<td>78,9</td>
</tr>
<tr>
<td>K-PHB</td>
<td>1,170</td>
<td>0,453</td>
<td>77,3</td>
</tr>
</tbody>
</table>

Tendo-se os índices de intercalação obtidos para os dois compostos (78,9% na fase K-PEO e 77,3% no K-PHB), sabendo-se que o precursor K-DMSO tinha 83,5% de intercalação, e sabendo-se que não resta tal fase no composto final (como atestado
pelos difratogramas), conclui-se que a substituição do DMSO pelos polímeros fundidos ou em solução, acarreta uma certa regeneração de caulinita não intercalada. Este fato é plenamente explicado por dois fatores, durante a síntese foi empregada alta temperatura para a fusão do PHB e do PEO (180°C e 130°C, respectivamente) por 4 a 5 dias. Além disso, os produtos da síntese ainda foram extensivamente lavados com água (PEO) ou NMP e acetona (PHB), a fim de retirar os excessos de polímero não intercalado. Tanto o aquecimento quanto as lavagens certamente contribuíram para uma desintercalação parcial, regenerando caulinita pura.

A figura 4.16 mostra as curvas de análise térmica (TG/DSC) para o PEO puro e para o composto K-PEO. Na análise do polímero puro observa-se, inicialmente, um pico endotérmico sem variação de massa, com máximo em 73°C referente à fusão do polímero. Na sequência observa-se um evento exotérmico, que culminará em 250°C, em um pico característico da queima do polímero, com perda de massa de 96,5% até 950°C.
FIGURA 4.16: Curvas de análise térmica (TG/DSC) do PEO puro (curvas pontilhadas) e do composto K-PEO (curvas continuas). Atmosfera estática de ar, taxa de aquecimento de 5°C/min.

No composto K-PEO inicialmente observa-se um pequeno pico endotérmico centrado em 46°C, com perda de 0,6% de massa até 140°C, relativo à eliminação das águas de absorção/adsorção. Logo em seguida é observada uma pequeníssima banda endotérmica, sem variação de massa característica, centrada em 73°C, relativa à fusão de uma pequena quantidade de polímero não intercalado ainda presente no composto. Imediatamente, tem início um gradativo processo de perda de massa, embutido no início de um processo fortemente exotérmico, que terá seu máximo em 349°C, e com uma perda de massa total de 27,2%, até
440°C. Este valor provavelmente contém um excesso devido ao fato da desidroxilação da matriz já ter tido início, como é constatado pela diferença de inclinação da curva de TG. Contudo, esta temperatura foi calculada como sendo o ponto de inflexão da curva de DSC, antes do pico da desidroxilação, prática comumente utilizada nestes casos.

O pico endotérmico em 514°C, na curva do DSC, refere-se ao processo de desidroxilação, que é acompanhado de uma perda de 10,6% de massa até 950°C, que como visto anteriormente, deve estar subestimada pelo fato dos processos sobreporem-se parcialmente. O resíduo final do processo foi de 62,8%. Entretanto, da análise térmica do PEO puro, sabe-se que há um resíduo final de 3,3% de resíduos não eliminados até 950°C. Levando-se em conta este valor, quantidade de polímero presente no composto, passa a ser de 28,1%.

Dos dados obtidos da análise térmica, e sabendo-se que a mostra de K-PEO tinha II = 78,9%, foi possível atribuir uma estequiometria de \(\text{K(PEO)}_{3,24} \) para a fase intercalada. Estes cálculos foram efetuados tomando-se como base a unidade de repetição do PEO, \(-\text{OCH}_2\text{CH}_2\)-. Esta estequiometria está, provavelmente, um pouco superestimada uma vez que, como visto anteriormente, o processo de desidroxilação já havia se iniciado antes da eliminação de toda matéria orgânica. Da mesma maneira, é possível que ainda haja, uma pequena
quantidade (estimadamente, menos que 5%) de polímero não intercalado, presente na amostra.

Verifica-se, também, que o pico da decomposição do polímero, que tinha um máximo em 250°C foi deslocado para 349°C no composto intercalado. Esta estabilidade térmica do polímero, que foi aumentada em quase 100°C, pode ser atribuída a dois fatores principais: A dificuldade de acesso do oxigênio ao interior das lamelas e as novas interações das moléculas poliméricas com a matriz de caulinita.

A figura 4.17 mostra as curvas de análise térmica (TG/DSC) para o PHB puro e para o composto K-PHB. Na análise do polímero puro observa-se, inicialmente dois pequenos picos endotérmicos em 169°C e 179°C, sem variação de massa associada, atribuídos à fusão do polímero. Em seguida há a presença de um grande pico endotérmico em 276°C com um pequeno ombro em 294°C, seguido imediatamente por um pequeno pico exotérmico em 307°C e posteriormente, por outro pico exotérmico em 400°C. Estes quatro fenômenos são atribuídos aos processo de decomposição e eliminação do polímero e são acompanhados por uma perda de 90,3% de massa, restando então, 9,7% de resíduos não eliminados.
FIGURA 4.17: Curvas de análise térmica (TG/DSC) do PHB puro (curvas pontilhadas) e do composto K-PHB (curvas contínuas). Atmosfera estática de ar, taxa de aquecimento de 5°C/min.

A análise térmica do composto K-PHB revela inicialmente o processo endotérmico de perda de umidade, com máximo em 40°C na curva de DSC, e com perda de 1,2% de massa até 140°C. Em seguida observa-se a presença de uma forte banda exotérmica com máximo em 309°C, seguida de um pequeno ombro exotérmico em 408°C. Estes dois fenômenos são atribuídos à decomposição do polímero intercalado, que é eliminado da matriz pela sua combustão. Observa-se então, que o processo de decomposição térmica do PHB foi grandemente influenciado pelo seu confinamento na caulinita. Dos quatro fenômenos presentes na decomposição de polímero puro, dois endotérmicos seguidos de
dois exotérmicos, após sua intercalação, observaram-se apenas dois fenômenos exotérmicos. Os fenômenos endotérmicos, provavelmente devidos à uma degradação da molécula polimérica, não puderam processar-se no interior das lamelas da matriz. Apesar disso, o início da degradação do polímero é observado aproximadamente nas mesmas temperaturas nos dois casos (\(\square 225^\circ C \)). Logo na sequência dos dois fenômenos exotérmicos, é detectado a sequência do evento endotérmico da desidroxilação da matriz, com máximo localizado em \(500^\circ C \).

Os processos anteriores de decomposição do polímero e desidroxilação da matriz, ocorrem em uma etapa contínua de perda de massa, estando parcialmente superpostos. Desta maneira é impossível atribuir o final da perda de matéria orgânica e o início da desidroxilação como independentes e em valores de temperatura exatos. No entanto, foi utilizado o ponto de inflexão (máximo da curva de DSC) do segundo evento exotérmico como limítrofe entre os eventos, na temperatura de \(394^\circ C \). Obviamente que após esta temperatura, ainda há perda de polímero, mas a desidroxilação da matriz também já teve início.

Com este valor de temperatura obtém-se uma perda de 11,76\% de massa de matéria orgânica. Como sabe-se que o polímero puro deixa resíduo de 9,7\%, o valor corrigido para a quantidade de polímero presente na amostra, é de 13,0\%. Novamente deve ser deixado claro que este valor é aproximado, e pode estar sub ou
até superestimado, o que influenciará diretamente o cálculo da estequiometria do material. Da mesma maneira, chega-se a uma perda de massa de 16,2% para a etapa da desidroxilação da matriz, até 950ºC. Valor este que também é estimado com uma certa margem de erro. Ao final dos processos térmicos detectados, a partir de 950ºC, há a presença de 72,0% de resíduos.

Dos dados descritos acima, e sabendo-se que a fase K-PHB tinha $\text{II} = 77,3\%$, obtém-se uma estequiometria de $\text{K(PHB)}_{0,60\pm0,03}$ para a fase intercalada. Muito possivelmente, esta estequiometria está subestimada, mas como visto anteriormente, as definições de temperaturas são particularmente difíceis.

É importante salientar que não foram encontrados picos atribuíveis à eliminação do DMSO precursor nos nanocompósitos, nem tampouco indícios dos picos de fusão do PHB (região de 170ºC) no composto K-PHB, revelando que não havia quantidade significativa de PHB livre (não intercalado) no composto. No entanto, alguma quantidade de polímero pode estar não intercalada e não ser detectada pela ausência do ponto de fusão, desde que ele esteja em monocamadas, envolvendo os cristalitos do argilomineral. Já no composto K–PEO, o pequeno pico referente a fusão do polímero que foi detectado, não implica na presença de quantidades consideráveis de polímero não intercalado, que deve estar presente, na sua maioria, nas
mesmas condições que no composto K-PHB, em monocamadas envolvendo os cristalitos da caulinita.

As figuras 4.18 e 4.19 mostram os espectros de FTIR da caulinita, do PEO, do composto K-PEO, do PHB e do composto K-PHB, na região de 4000 a 400 cm⁻¹. Nestes espectros podem ser identificados claramente os picos relativos à caulinita e aos polímeros intercalados. Não foram, no entanto, observados picos relativos ao DMSO do composto precursor, indicando que sua substituição pelo polímero ocorreu de forma completa.

![Diagrama FTIR](image)

Figura 4.18: Espectros de FTIR da caulinita pura (a), do PEO puro (b) e do composto K-PEO (c), na região entre 4000 e 400 cm⁻¹

A região de 3500-3800 cm⁻¹, típica dos estiramentos das hidroxilas da caulinita, apresenta-se plenamente identificável nos nanocompósitos estando, no entanto, mascara pela
caulinita pura ainda presente e também, principalmente no composto K-PEO, parcialmente influenciada pela larga banda característica da água na região de 3500 cm⁻¹.

A banda em 2876 cm⁻¹, referente aos estiramentos dos C-H metilênicos no PEO puro é visivelmente resolvida em dois picos distintos no espectro do composto intercalado. Um deles, em 2947 cm⁻¹ é referente aos estiramentos assimétricos e o outro, em 2887 cm⁻¹, aos estiramentos simétricos. Estes resultados são consistentes com os reportados previamente para a intercalação de poli(etileno-glicol) na caulinita [40], e indicam que as cadeias de polímeros apresentam movimentos conformacionais mais restritos no interior dos espaços interlamelares da matriz.

Figura 4.19: Espectros de FTIR da caulinita pura (a), do PHB puro (b) e do composto K-PHB (c), na região entre 4000 e 400 cm⁻¹.
A síntese dos compostos de intercalação por fusão em atmosfera ambiente, acarretou em processos oxidativos nas cadeias poliméricas, obtendo-se cadeias de PEO e PHB consideravelmente carboniladas. O resultado deste processo oxidativo é claramente verificado na região entre 1800-1500 cm⁻¹, que apresenta bandas de absorção mais intensas que os polímeros originais, principalmente para as cadeias de PEO. Surpreendentemente, estes resultados não foram observados para o poli(etileno-glicol) intercalado na caulinita sob as mesmas condições [40]. Baseado na observação desta oxidação, que certamente incorre em alguma quebra das moléculas, é possível admitir que haja uma certa quantidade de material intercalado que já não poderia mais ser considerado como o polímero original, mas algum de seus derivados de oxidação. No entanto, para efeitos práticos de cálculo da estequiometria, e sem maiores análises do produto final, considera-se aqui, o produto como sendo intercalado apenas com o polímero original.

As figuras 4.20 a 4.23 mostram micrografias do composto K-PHB, realizadas por microscopia eletrônica de varredura (MEV), sob diferentes magnificações.
A figura 4.20, em baixa magnificação, apresenta uma visão geral dos aglomerados maciços formados pelo nanocompósito: Grandes blocos, com dimensões na ordem de 50-300 μm, apresentando aparentes planos de clivagem regular, e alguma quantidade de material com uma granulometria um pouco inferior, mas aparentemente ainda aglutinado com o restante.

Com uma magnificação um pouco maior –figuras 4.21 e 4.22– observa-se a superfície de um destes blocos. Percebe-se que eles são formados por uma aglutinação bastante homogênea dos cristalitos da matriz, provavelmente mantidos unidos pelo pequeno excedente de polímero não intercalado, e agrupados com uma certa orientação preferencial segundo seus planos basais.
Finalmente, sob uma magnificação ainda maior, na figura 4.23, observam-se vários cristalitos individualmente. Verifica-se claramente que eles foram grandemente afetados pelo processo de intercalação pois encontram-se bastante
danificados. Suas arestas e cantos estão desfigurados e sua morfologia hexagonal original, praticamente não é mais visível. Restam, em alguns casos, apenas blocos irregulares. São vistos inúmeros fragmentos com dimensões inferiores às do material original. Esta grande fragmentação certamente é decorrente de todo o processo de fusão/intercalação/lavagem/moagem pela qual a matriz passou, até a obtenção do produto final. As faces dos cristalitos apresentam fissuras e aglomeração de fragmentos cristalinos em suas superfícies. Este material encontra-se aderido à superfície da caulinita, muito provavelmente pela presença de uma pequena quantidade de polímero amorfo recobrindo os blocos maiores. Eventualmente, este excesso de polímero não-intercalado, observado pelas análises de TG/DSC, pode ser o responsável por parte do arredondamento dos cantos dos cristalitos, por recobri-los irregularmente. De qualquer forma, este excesso de polímero encontra-se muito fortemente aderido/adsorvido às superfícies do argilomineral, pois resistiu a todas as lavagens do produto, e é o responsável pela grande aglutinação e coesão do material, uma vez que os cristalitos encontram-se permeados por uma pequena quantidade deste material agregante, resultando em um nanocompósito com aspecto comparável ao de uma cerâmica sinterizada.
FIGURA 4.23: Micrografia do composto K-PHB

As análises por microscopia eletrônica de varredura do composto K-PEO (não mostradas), revelaram resultados muito semelhantes aos do composto K-PHB: Cristalitos muito danificados em sua superfície e um conjunto bastante homogêneo, mantido unido pela pequena quantidade de PEO não intercalado ainda presente.

Muitas informações puderam ser retiradas dos compostos K-PEO e K-PHB pelas técnicas aqui utilizadas, no entanto, muitas dúvidas ainda pairam, e muitos aspectos ainda devem ser devidamente esclarecidos: Estudos sobre o arranjo estrutural das moléculas poliméricas no interior da matriz e sobre sua superfície assim como da degradação sofrida pelo polímero durante o processo de intercalação. Estudo das propriedades mecânicas destes nanocompositos, além da possível biodegradabilidade do PHB intercalado. Ademais, é de grande
interesse a pesquisa da influência do grau de esfoliação da matriz nas propriedades do nanocompósito. Um produto obtido com a caulinita parcialmente ou até totalmente esfoliada certamente exibiria interações muito mais acentuadas entre as fases orgânica e inorgânica. Se for levado em consideração a possível organo-funcionalização da fase esfoliada, antes da adição do polímero, todo um novo horizonte de possibilidades é visualizado, com a possibilidade de interações muito mais intensas entre as fases, o que refletiria em propriedades mecânicas grandemente afetadas. Em suma, o campo de pesquisas em nanocompósitos argilomineral/polímero orgânico, ainda tem muito a oferecer.
4.5 - Intercalação de Metanol e de Água (Caulinita Hidratada)

O composto de intercalação caulinita/metanol não chegou a ser caracterizado devido à sua extrema instabilidade: A partir do momento que ele é retirado do sistema contendo metanol, sua desintercalação inicia. As tentativas de caracterizá-lo por PXRD foram frustradas, uma vez que mesmo durante o início da varredura, já obtinha-se apenas caulinita pura no porta-amostras, devido à alta volatilidade do metanol. Contudo, a literatura mostra valores de expansão interplanar basal de 1,11 nm para uma fase intercalada com metanol obtida a partir do composto K-NMF [47, 49, 51] e de 1,10 nm para o metanol intercalado numa amostra de K-Hidr [80]. Devido às mesmas dificuldades experimentais a análise de TG/DSC não pode ser realizada.

Na figura 4.24 são mostrados os difratogramas de raios-X das duas fases distintas de caulinita intercalada com água obtidas após a lavagem da fase K-Metanol com água, a primeira delas ainda úmida (K-Água), e a outra obtida após secagem à temperatura ambiente (K-Hidr), assim como do precursor K-DMSO e da caulinita pura.

As quatro primeiras reflexões basais do composto K-Água (h1, h2, h3 e h4) são encontradas em ângulos (2theta) de 10,22°, 20,65°, 31,26° e 42,15°, respectivamente, o que caracteriza uma distância interplanar basal de 0,995 nm e uma expansão interplanar basal, em relação à caulinita pura, de 0,279 nm. O
índice de intercalação calculado a partir das intensidades de h1 e K1 foi de 84,6%.

Após a secagem da fase K-Água por 3 dias em temperatura ambiente, observou-se uma mudança nos padrões de difração de raios-X, como observado na figura 4.24. O pico h1 em 2θ = 10,22° foi deslocado para 11,86° (H1), caracterizando um nova fase. Esta nova fase apresentou suas outras duas reflexões basais (H2 e H3) em ângulos de 24,27° e 36,91°, o que
caracterizou um composto com distância interplanar basal de 0,848 nm e expansão interplanar basal de 0,132 nm. O índice de intercalação caiu para 65,8% nesta fase K-Hidr. Os valores de \(d\), \(\Delta d\) e \(I\) para estas duas fases encontram-se agrupados na tabela 4.6.

<table>
<thead>
<tr>
<th>Fase</th>
<th>(d) (nm)</th>
<th>(\Delta d) (nm)</th>
<th>(I) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Água</td>
<td>0,995</td>
<td>0,279</td>
<td>84,6</td>
</tr>
<tr>
<td>K-Hidr</td>
<td>0,848</td>
<td>0,132</td>
<td>65,8</td>
</tr>
</tbody>
</table>

Percebe-se que houve, então, uma diminuição da distância interplanar basal da fase intercalada de 0,147 nm devido à eliminação de parte do material intercalado, pela secagem do solvente (água), assim como um alargamento das bases dos picos, em relação aos seus precursores, o que caracteriza uma maior desordem cristalina. O índice de intercalação também caiu com a secagem em 18,8%, o que implicou na recuperação de caulinita não intercalada. Os valores obtidos para as fases K-Água e K-Hidr não mostram quaisquer discrepâncias com os valores anteriormente relatados para estes compostos [41-44, 47-48], excetuando-se talvez, por índices de intercalação normalmente um pouco superiores, como já foi discutido para a intercalação de DMSO.
Até o momento não foi proposta uma justificativa plenamente satisfatória para os fenômenos envolvidos na intercalação da água na caulinita, a partir do derivado intercalado com metanol. Em uma análise preliminar, seria razoável supor que metanol e água estariam co-intercalados na fase K-Água, o que corroboraria para um maior d. Durante o processo de secagem desta fase, o metanol seria finalmente eliminado, restando apenas água intercalada. Este fenômeno poderia ser o responsável pela desintercalação parcial que regenera caulinita pura, se for suposto que entre algumas lamelas poderia não haver quantidade suficiente de água co-intercalada com o metanol que pudesse sustentar a expansão interlamelar após a eliminação deste.

No entanto há o fato de que se uma amostra de caulinita hidratada 0,8 nm (K-Hidr) for colocada em contato novamente com água, por tempo suficiente, a fase 1 nm (K-Água) será regenerada [48] (o que praticamente exclui a hipótese anterior). Desta maneira é mais seguro imaginar que a fase 1 nm possui uma quantidade maior de água do que é possível sustentar na ausência desta como solvente. Já foi afirmado que, na fase 0,8 nm as moléculas de água encontram-se encaixadas na cavidade ditrigonal da folha de sílica [44]. Desta maneira, a fase 1 nm poderia ter uma segunda “camada” de água intercalada, possivelmente interagindo apenas fracamente por ligações de hidrogênio com a caulinita, ou com a própria
água presente nas cavidades ditrigonais. No entanto, estudos mais detalhados da estrutura destas duas fases ainda são necessários. É de se esperar que estudos como estes já estejam em vias de ser levados adiante por algum grupo de pesquisas que trabalhe com intercalação em argilominerais, uma vez que um número cada vez maior de publicações envolvendo o uso das fases K-Água e K-Hidr como precursores para outras intercalações estão sendo divulgadas [44-50].

A análise térmica (TG/DSC) do composto K-Hidr, mostrada na figura 4.25, foi realizada com uma amostra que possuía II menor do que a apresentada anteriormente (apenas 58,35%), mas que revelou uma menor quantidade de umidade presente, e por isso foi utilizada, em detrimento da outra. Apesar disto, as duas amostras apresentaram distâncias interplanares basais idênticas.

FIGURA 4.25: Curvas de análise térmica (TG/DSC) da fase K-Hidr. Atmosfera estática de ar, taxa de aquecimento de 5°C/min. A curva pontilhada é a expansão vertical da curva de DSC.
A análise das curvas de TG/DSC revelou inicialmente um pico endotérmico com máximo em 57°C e perda de 0,6% de massa, atribuído à perda de águas de absorção e adsorção. Logo em seguida verificou-se (pela expansão da curva de DSC) uma banda endotérmica larga entre 80°C e 343°C, composta ao menos de 4 passos distintos, e com perda de 3,2% de massa, em matéria seca. Esta etapa é característica da saída das moléculas de água intercaladas na matriz da caulinita, e acarreta na recuperação da caulinita pura, a partir de 343°C. A partir desta temperatura, inicia-se o processo endotérmico de desidroxilação, que culminará em 524°C, com uma perda de 14,0% de massa seca. Finalmente, em 977°C, observa-se o pico exotérmico, sem variação mássica, relativo à cristalização dos óxidos presentes.

A partir desses dados da análise térmica, e sabendo que a amostra tinha um índice de intercalação de 58,35%, pode-se atribuir uma estequiometria de $K(H_2O)_{0,8340,04}$ para a fase intercalada. Este valor está plenamente de acordo com os resultados relatados para a hidratação da caulinita pelo mesmo método ($K(H_2O)_{0,81}$) [48], por reação com etileno-glicol ($K(H_2O)_{0,60}$) e para o hidrato de 0,84 nm da nacrita ($N(H_2O)_{0,78}$) [44], ou ainda para a hidratação da caulinita parcialmente esfoliada pelo tratamento com uréia ($K(H_2O)_{0,64}$) [45].

As figuras 4.26 e 4.27 mostram os resultados da análise de FTIR para a caulinita pura e para os compostos K-DMSO e K-
Hidr, nas regiões entre 3800 cm\(^{-1}\) e 3060 cm\(^{-1}\) e entre 2070 cm\(^{-1}\) e 400 cm\(^{-1}\), respectivamente. O espectro do composto caulinitita hidratada encontra-se plenamente de acordo com o que já foi exaustivamente detalhado na literatura [44, 48, 49], exceto por variações de intensidades causadas pelo excesso de caulinitita não intercalada presente na amostra K-Hidr.

FIGURA 4.26: Espectros de FTIR da caulinitita pura (a) e dos compostos K-DMSO (b) e K-Hidr (c), na região entre 3800 cm\(^{-1}\) e 3060 cm\(^{-1}\).

A análise dos espectros de FTIR da caulinitita hidratada na região dos estiramentos das hidroxilas da matriz, evidenciou novas bandas de absorção em 3598 cm\(^{-1}\) (presente no precursor K-DMSO) e em 3549 cm\(^{-1}\), atribuídas às hidroxilas comprometidas com
ligações de hidrogênio com a água intercalada. A segunda dessas bandas (2549 cm\(^{-1}\)), por ser mais larga e mal definida, é relativa a moléculas de água mais fracamente ligadas à matriz [48]. Também verifica-se que as intensidades das demais bandas mantêm-se praticamente inalteradas em relação à caulinita pura, fato explicado pela alta quantidade de caulinita não intercalada ainda presente (41,6\%).

FIGURA 4.27: Espectros de FTIR da caulinita pura (a) e dos compostos K-DMSO (b) e K-Hidr (c), na região entre 2070 cm\(^{-1}\) e 400 cm\(^{-1}\).

Na região característica das deformações das hidroxilas da caulinita, verifica-se uma nova banda em 968 cm\(^{-1}\), de acordo com o que já foi anteriormente relatado [44-48], esta banda
também é relativa às hidroxilas da superfície da lamela, comprometidas com a ligação de hidrogênio com a água, e tende a substituir totalmente banda em 935 cm\(^{-1}\) em amostras com II próximos de 100%.

Há, ainda, a presença da banda de deformação ("bending") da água em 1629 cm\(^{-1}\), com um pequeno ombro em ~1651 cm\(^{-1}\). Estes valores estão de acordo com o que foi relatado como uma banda de deformação de água adsorvida nas superfícies externas da caulinita (1630 cm\(^{-1}\)) e ligada por ponte de hidrogênio com as hidroxilas da matriz (1655 cm\(^{-1}\)) [44].
Dos difratogramas, fica evidente a intercalação da anilina, uma vez que o pico da caulinita hidratada M1 = 11,86°, desapareceu por completo, e um novo pico surgiu em 2θ = 14,97° (A1). Os outros picos referentes ao composto K-Anil, foram: A2 = 13,93°, A4 = 28,14°, A5 = 35,37°, A6 = 42,83° e A7 = 50,34°. Estes valores caracterizam uma distância interplanar basal (d) de 1,474 nm para a fase K-Anil, e uma expansão interplanar basal (Δd) de 0,758 nm com relação à caulinita pura. O índice de intercalação obtido foi de 77,2%.

Esta expansão de 0,758 nm para a intercalação do cloreto de anilíno na caulinita (a anilina está presente na forma de sal, uma vez que foi tratada com HCl durante a síntese) é consistente com a expansão de 0,78nm reportada para a intercalação da p-nitroanilina [47] e com a expansão de 0,48nm para a intercalação da piridina na caulinita [50], o primeiro derivado de uma caulinita hidratada(1nm) e o segundo derivado de um precursor intercalado com NMF e posteriormente com metanol. Em ambos os casos, as moléculas do intercalante encontram-se em posição semi-vertical em relação aos planos das lamelas, não totalmente perpendiculares, mas com certo ângulo de inclinação. É muito provável que a anilina também esteja nesta posição no composto K-Anil (com um certo ângulo específico), contudo, somente estudos estruturais mais detalhados, incluindo espectroscopia Raman e ressonância
magnética nuclear, e modelagens matemáticas do composto K-Anil deverão revelar a real posição das moléculas de anilina.

Após a polimerização da fase K-Anil com persulfato em meio ácido, verifica-se pelo difratograma que o pico A1=14,97° continua presente, no entanto, observa-se uma banda larga entre 8,09° e 10,40° ($d_{medio} = 1,13 \text{ nm}$) com um máximo de intensidade em 9,61° ($d_{pico} = 1,069 \text{ nm}$) o que caracteriza uma expansão interplanar média de 0,41 nm. Esta banda deve ser atribuída a várias cadeias poliméricas de anilina, em estágios de polimerização estruturalmente diferentes. Estas "polianilinas" presentes não estão necessariamente intercaladas, uma vez que havia excesso de anilina presente durante a reação, pode haver uma certa quantidade de polímero adsorvido sobre os cristalitos e também livre no sistema. Como não se conhece exatamente o número de fases presentes (K + K-Anil + x K-PANIs), nem sua atribuição no difratograma, não é possível calcular os índices de intercalação da fase K-Anil nem das fases K-PANI presentes.

Caso a banda presente no difratograma seja relativa à polianilina intercalada, o valor médio de expansão interplanar de 0,4nm obtido, seria consistente com um arranjo de monocamadas poliméricas deitadas (paralelas ao plano basal da caulinita), de acordo com o que já foi extensivamente pesquisado para intercalações de polianilina em diversas matrizes lamelares [96-102].
A análise do difratograma da fase K-PANI' (não mostrado), que sofreu uma lavagem extensiva com NMP, verifica-se uma recuperação parcial da caulinita não intercalada, mas ainda mantém-se presentes o pico da anilina intercalada e a banda referente à polianilina.

Do difratograma da fase K-PANI aquecida a 60ºC por 24 horas verifica-se que houve um grande aumento da desordem do material e uma recuperação parcial da caulinita pura, por desintercalação de parte da anilina intercalada. Verifica-se também, que a banda relativa à polianilina foi deslocada para valores angulares maiores, caracterizando distâncias interplanares menores, sua intensidade máxima encontrando-se em $d = 9,9$ nm.

A figura 4.29 apresenta as curvas de análise térmica (TG/DSC) para as fases K-Anil e K-PANI. Na análise térmica da fase K-Anil, verifica-se a partir do início, uma banda endotérmica até 80ºC, com máximo em 45ºC e perda de massa associada de menos de 0,1%, relativa à perda de água de absorção/adsorção. Em seguida, tem início uma sequência de fenômenos endotérmicos, formando uma banda mal definida, que estende-se praticamente até 354ºC, e que é acompanhada de uma perda de 3,9% de massa. Esta série de fenômenos é atribuída à desintercalação e eliminação das moléculas de anilina do sistema, sem combustão. Uma vez que a anilina estava presente sob a forma de seu cloreto, é muito provável que, neste passo,
HCl seja também eliminado. Na sequência, é observado um grande pico endotérmico com máximo em 522°C e perda de 14,0% de massa, referente à desidroxilação da caulinita presente.

Com esses dados da análise térmica, e sabendo-se que o índice de intercalação obtido foi de 77,2%, pode-se atribuir uma estequiometria de $K(C_6H_5NH_2)_{0,1840,01}$ em relação à anilina pura intercalada. Se for considerado o cloreto de anilinio como o intercalante, e sua total eliminação até 385°C, tem-se uma estequiometria de $K(C_6H_5NH_3^+Cl^-)_{0,1160,01}$.

![Diagrama de análise térmica](image)

FIGURA 4.29: Curvas de análise térmica (TG/DSC) do composto K-Anil (curvas continuas) e do composto K-PANI (curvas pontilhadas).

Da análise das curvas de TG/DSC do composto K-PANI, observa-se, inicialmente, um pico endotérmico em 41°C, referente
á uma perda de menos de 0,1% de massa de água de absorção/adsorção. Após isso, tem sequência uma larga banda endotérmica que estende-se até 385°C, e com um pico definido em 219°C. Esta banda, tem perda de massa associada de 7,3%, e é, como um todo, relativa à eliminação da anilina intercalada restante no material, assim como da polianilina de baixo peso molecular formada (oligomérica), intercalada ou livre e mesmo de cloreto de anilínio não polimerizado eventualmente presente. Em seguida, há a presença de um forte pico endotérmico com máximo em 510°C, e perda de massa de 15,2% até 950°C, relativo à desidroxilação da caulinita. Pode ser imaginado que há polianilina presente sob a forma de cadeias de alto peso molecular, e que ela é eliminada (queimada) durante o processo endotérmico da desidroxilação, ficando mascarada sob este. No entanto, a simetria do pico do DSC e a queda constante da curva do TG, sem mudanças bruscas de inclinação ou patamares, praticamente elimina esta possibilidade, exceto no caso improvável dos dois fenômenos ocorrerem na mesma temperatura (como em "oposição de fase").

De qualquer modo, mesmo ocorrendo esta hipótese, a quantidade de material polimérico presente deve ser pequena o suficiente para não causar interferência visível no perfil das curvas durante a desidroxilação.

Estes fatos revelam que a anilina, caso tenha sido polimerizada no interior das lamelas, formou na sua maioria,
cadeias de baixo peso molecular, passíveis de serem eliminadas até 350°C. Mais provavelmente, a polimerização do material intercalado deu-se apenas nas bordas dos cristalitos, após a qual, a impossibilidade de acesso do agente oxidante ao interior das lamelas, acarretou a interrupção da reação de polimerização. Paralelamente, o excesso de anilina não intercalada presente, pode ter recoberto de polímero alguns cristalitos, separando-os totalmente do meio reacional oxidativo.

Sob este ponto de vista, conclui-se que a tentativa de polimerização química do composto K-Anil, não é recomendável. No entanto, dentre as várias tentativas experimentais realizadas, incluindo outras oxidações químicas e polimerização térmica (aquecimento sob refluxo), e que usualmente são reportadas com sucesso para a intercalação em outras matrizes, a oxidação ácida com persulfato foi a única que mostrou algum resultado positivo.

A figura 4.30 mostra os espectros de FTIR da caulinita pura, e dos compostos K-Anil, K-PANI, e da amostra de K-PANI lavada extensivamente com NMP (K-PANI’), na região entre 4000 e 400 cm⁻¹. A análise destes espectros apenas complica mais as conclusões de que houve realmente uma intercalação na matriz da caulinita. O espectro do composto K-Anil é virtualmente idêntico ao da caulinita pura, não apresentando novas bandas, atribuíveis à anilina intercalada, senão em intensidades muito
pequenas, próximas ao ruído de fundo. As únicas alterações visíveis ocorreram na região entre 3500-3800 cm\(^{-1}\), referente aos estiramentos das hidroxilas, e podem ser atribuídas à presença da fase precursora de caulinita hidratada (K-Hidr) [44, 48, 49]. A pequena banda em 3668 cm\(^{-1}\) desapareceu e surgiu uma nova banda em 3600 cm\(^{-1}\), com pequena intensidade, mas quase totalmente resolvido. Verificou-se, também, o surgimento de uma pequena banda centrada em 3552 cm\(^{-1}\), com intensidade muito baixa, ambos os fenômenos atribuíveis a estiramentos de grupos OH envolvidos em ligações de hidrogênio com a água. A banda entre 2387 e 2284 cm\(^{-1}\) é devida a problemas experimentais durante a leitura da amostra, não sendo referente ao composto K-Anil. Desta maneira, não há evidência espectral detectável que suporte a afirmação da intercalação da anilina na matriz lamelar de caulinita.
FIGURA 4.30: Espectros de FTIR da caulinita pura (a), do composto K-Anil (b), do composto K-PANI (c), e do composto K-PANI' (d), na região entre 4000 e 400 cm\(^{-1}\).

O espectro de FTIR do composto K-PANI mostrou outras diferenças em relação à caulinita pura, além das também presentes no composto K-Anil. A região entre 3200 a 1200 cm\(^{-1}\) revelou a presença de algumas bandas atribuíveis à polianilina na forma de sal esmeraldina (1250 cm\(^{-1}\), 1305 cm\(^{-1}\) e 1580 cm\(^{-1}\), por exemplo) mas também apresentou bandas características do íon anilínio, como em 2930 cm\(^{-1}\), 2600 cm\(^{-1}\) e uma banda fina em 1490 cm\(^{-1}\) [103-105]. Já o composto K-PANI', que passou por uma lavagem mais extensiva, revelou uma grande diminuição na intensidade destas bandas relativas ao polímero e o desaparecimento quase completo das bandas do anilínio. Também
foram observados mais claramente o pico em 3600 cm\(^{-1}\) e a pequena banda em 3552 cm\(^{-1}\), ambos relativos à presença da fase precursora K-Hidr, como visto anteriormente. Estes fatos revelam que houve uma grande diminuição da quantidade de polianilina presente na fase K-PANI', ou seja, que a maior parte do polímero presente não encontra-se intercalado na matriz, uma vez que foi lavado pela NMP, e que a grande quantidade de anilínio presente, encontrava-se associado ao polímero não intercalado. Estes fatos não eliminam totalmente a possibilidade de ainda haver polímero realmente intercalado. No entanto, não há quantidade de evidências suficiente para mostrar que realmente há algum polímero intercalado na caolinita, e não apenas livre no composto.

Em suma, dos resultados das análises de PXRD, TG/DSC e FTIR, fica evidenciada a intercalação da anilina na fase K-Hidr, a fim de formar o composto K-Anil, apesar da falta de evidências espectrais na análise de FTIR. Já as análises do composto K-PANI', obtido pela polimerização química com persulfato em meio ácido do composto K-Anil, não revelaram dados suficientes para provar que cadeias poliméricas estão realmente presentes nos espaçamentos interlamelares da matriz, que ainda tem grande quantidade de cloreto anilínio intercalado.
4.7 - Tentativas de outras intercalações

Das várias outras tentativas de síntese descritas no tópico 3.1.4, nenhuma mostrou-se capaz de formar qualquer composto de intercalação detectável. Todas as amostras foram unicamente analisadas por PXRD (resultados não apresentados), mas, uma vez que seus difratogramas não apresentavam diferenças com o da caulinita pura, salvo por eventuais diminuições de cristalinidade ou amorfizações totais do material cristalino, outras caracterizações não se faziam necessárias.

Estes insucessos não eliminam a possibilidade da intercalação das moléculas em questão (poliéter 1,8-coroa-6, Na₂HPO₄, tiocetamida, tiouréia, feniluréia e dimetilglicoxima) sob condições experimentais possivelmente diferentes. Pelo contrário, estas tentativas infrutíferas motivam ainda mais à novas tentativas de síntese e à busca por outras moléculas que possam formar compostos de intercalação com a caulinita.
4.8 - Comparações entre os compostos obtidos e discussões finais

Durante os trabalhos de síntese aqui descritos, ao menos nove diferentes compostos de intercalação da caulinita foram devidamente caracterizados. A tabela 4.7 apresenta um resumo dos principais características obtidas para estes compostos, assim como para a caulinita pura.

TABELA 4.7: Resumo dos dados obtidos para os diversos compostos sintetizados

<table>
<thead>
<tr>
<th>FASE</th>
<th>D (nm)</th>
<th>Δd (nm)</th>
<th>II (%)</th>
<th>Estequiometria</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>0,716</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>K-DMSO</td>
<td>1,121</td>
<td>0,405</td>
<td>83,5</td>
<td>K(DMSO)$_{0,40}$</td>
</tr>
<tr>
<td>K-Aacetato</td>
<td>1,406</td>
<td>0,690</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>K-Metanol</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>K-Água</td>
<td>0,995</td>
<td>0,279</td>
<td>84,6</td>
<td>--</td>
</tr>
<tr>
<td>K-Hidr</td>
<td>0,848</td>
<td>0,132</td>
<td>65,8</td>
<td>K(H2O)${0,83}$</td>
</tr>
<tr>
<td>K-NMP</td>
<td>1,231</td>
<td>0,514</td>
<td>85,0</td>
<td>K(NMP)$_{0,39}$</td>
</tr>
<tr>
<td>K-Bz</td>
<td>1,429</td>
<td>0,714</td>
<td>73$^{[1]}$</td>
<td>K(Bz)$_{0,32}$</td>
</tr>
<tr>
<td>K-PEO</td>
<td>1,116</td>
<td>0,399</td>
<td>78,9</td>
<td>K(PEO)$_{3,24}$</td>
</tr>
<tr>
<td>K-PHB</td>
<td>1,170</td>
<td>0,453</td>
<td>77,3</td>
<td>K(PHB)$_{0,60}$</td>
</tr>
<tr>
<td>K-Anil</td>
<td>1,474</td>
<td>0,758</td>
<td>77,2</td>
<td>K(C$_6$H5NH)${0,15}$</td>
</tr>
<tr>
<td>(K-PANI)</td>
<td>1,13</td>
<td>0,41</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

*: O valor do II para o composto K-Bz foi calculado indiretamente, por normalização com o difratograma do composto K-DMSO.

Embora observa-se uma grande diferença entre as estequiométrias dos produtos, com valores entre 0,15 até 3,24, não deve ser esquecido que estes valores levam em conta a
massa molecular de cada intercalante (indicativo do tamanho de cada molécula), sendo portanto muito diferentes se comparadas moléculas como água e anilina, além do grau de intercalação de um intercalado depender de fatores estruturais e das diferentes interações entre cada intercalante a matriz.

Por outro lado, os valores de índices de intercalação para os diferentes compostos obtidos estiveram sempre dentro de uma faixa de variação comparativamente menor, em relação às grandes variações de estequiometrias. Este fato revela que todas as intercalações procederam com sucesso, até que uma certa quantia de caulinita restasse como não intercalável. Uma possível explicação para este fato, baseada na presença de sílica amorfa soldando várias lamelas, já foi discutida anteriormente.

Outra comparação possível de ser feita é a das temperaturas de desidroxilação da caulinita nos diferentes compostos obtidos. Estes valores encontram-se entre 500°C (K-PHB) e 552°C (K-NMF), mas a maioria está muito próxima de 527°C, que é a temperatura encontrada para a desidroxilação da caulinita pura. No entanto, estas são comparações um tanto perigosas, uma vez que os resultados de análises térmicas são fortemente influenciados pela taxa de aquecimento da amostra e pela sua granulometria. Da mesma maneira, vários outros fatores como o tipo de forno, o fluxo e a composição da atmosfera e quantidade de amostra, podem influir nestes
resultados. Mesmo assim, os resultados obtidos mostraram que, onde houve alguma diferença significativa, como no caso do composto K-NMP, ela é plenamente justificada pela alta temperatura de eliminação da NMP, que acaba segurando a estrutura da caulinita até temperaturas mais elevadas.

Finalmente, discussões poderiam ser levantadas sobre o fenômeno da intercalação em si, e sobre porque algumas moléculas tão grandes como o acetato de potássio, intercalam mesmo em estado sólido na caulinita pura, e outras tão pequenas e fortemente polares como a água ou a NMP não são capazes de penetrar nos espaçamentos interplanares da matriz sem uma prévia expansão com DMSO. Da mesma maneira, porquê moléculas como tiouréia, feniluréia, tiocetamida, entre outras, tão similares com outras moléculas já intercaladas com sucesso, não foram intercaladas mesmo com várias tentativas experimentais diferentes.

Neste caso, o meio científico ainda não chegou a conclusões definitivas, nem ao menos a especulações bem fundamentadas sobre muitas dessas questões. Muitos estudos estruturais e, principalmente, modelagens e simulações dos processos de intercalação e dos compostos obtidos ainda devem ser realizados, a fim de conseguir-se montar um arcabouço teórico envolvendo a cinética e a termodinâmica química que regem estes processos de intercalação.
5 - PERSPECTIVAS FUTURAS

Muito ainda resta ser pesquisado no campo de modificação química de superfícies de argilominerais e síntese de nanocompósitos argilomineral/polímero orgânico. De início, de que foi visto e pesquisado durante os trabalhos deste mestrado, ainda restam maiores elucidações estruturais sobre todos os compostos preparados principalmente os menos estudados (K-NMP, K-Bz, K-PEO, K-PHB e K-Anil). Estas análises certamente envolveriam o uso de técnicas mais avançadas, como espectroscopia Raman, ressonância magnética nuclear no estado sólido, espectroscopia fotoeletrônica de raios-X (XPS) e modelagens computacionais e refinamentos estruturais dos compostos obtidos. Além disso, são precisos estudos mais detalhados, também demandando mais tentativas de síntese, para a intercalação de anilina e sua polimerização na caulinita. Caso o composto K-PANI seja realmente sintetizado com sucesso, avaliações sobre suas propriedades elétricas seriam uma consequência natural, podendo revelar detalhes bastante interessantes sobre sua possível condutividade anisotrópica.

No campo dos nanocompósitos polímero/argilomineral, muitos são os horizontes. Novas pesquisas devem ser conduzidas a fim de avaliar a influência do grau de esfoliação da caulinita nas propriedades mecânicas do nanocompósito. Da mesma maneira, é de extremo interesse a possibilidade da esfoliação e posterior funcionalização da caulinita. Estes compostos
esfoliados/funcionalizados, se obtidos com sucesso, e não há empecilho visível para sua obtenção, abririam um novo leque de possibilidades. A superfície da caulinita esfoliada, poderia ser facilmente funcionalizada e re-funcionalizada com inúmeras moléculas que não conseguem acesso aos espaços interlamelares da matriz original. Desta maneira a superfície gibética hidrofílica poderia ser transformada, assumindo as mais variadas características de acordo com a molécula funcionalizante. Estes novos materiais apresentariam grandes possibilidades de formação de nanocompósitos com polímeros orgânicos. Se a combinação correta de molécula funcionalizante e polímero orgânico for conseguida, as fortes interações entre a carga e a matriz provavelmente gerariam um nanocompósito com propriedades mecânicas surpreendentes, mesmo em relação ao nanocompósito argilomineral intercalado/polímero intercalante.

Ainda há a possibilidade de visualizar tais compostos como materiais hidrofobizados sem o uso de agentes de superfície, agentes estes, que são amplamente empregados atualmente, mesmo sabendo-se de suas características danosas ao meio ambiente. E dentro dessas aplicações podem ser citados usos como aditivos para dispersões, tintas, cerâmicas e estabilizantes de emulsões.

Em resumo, esse campo de pesquisas necessita, ainda, de muito trabalho experimental, e há a possibilidade de obtenção de muitos novos compostos, com propriedades muito interessantes e utilizações ainda inexploradas. Ainda há o
fato de que o Brasil é o 3º maior produtor mundial de caulinita, e suas reservas são as maiores do planeta. Face a tudo isso, arrisco-me a afirmar que a formação de grupos de pesquisa fortes e atuantes nas áreas envolvendo argilominerais é até estratégica para o crescimento científico e tecnológico nacional.
6 - CONCLUSÕES

Foram preparados dez diferentes compostos de intercalação com a matriz de caulinita, cinco destes sendo reportados pela primeira vez na literatura. Dois compostos foram obtidos diretamente da caulinita pura, e foram utilizados como precursores em outras reações, por isso então, foram denominados de compostos precursores. São eles, o composto caulinita/dimetilsulfóxido (K-DMSO) e o composto caulinita/acetato de potássio (K-Acetato).

A partir do composto K-DMSO foram preparados três compostos de intercalação de acordo com procedimentos descritos na literatura, são eles o composto caulinita/metanol (K-Metanol), o composto caulinita/água(1nm) (K-Água) e o composto caulinita/água(0,8nm) (K-Hidr). Também a partir do composto K-DMSO foram preparados quatro novos compostos de intercalação (compostos secundários), nunca antes descritos na literatura: caulinita/N-metil-pirrolidona (K-NMP), caulinita/benzamida (K-BZ), caulinita/poli(óxido de etileno) (K-PEO), caulinita/poli-β-hidroxibutirato (K-PHB). A partir do composto K-Hidr foi preparado outro novo composto, caulinita/anilina (K-Anil).

Todos os compostos preparados foram, sempre que possível, devidamente caracterizados por meio de difração de raios-x de pó (PXRD) análise térmica (TG/DSC) e por espectroscopia de absorção no infravermelho (FTIR). A fase instável K-Metanol
não pode ser caracterizada por nenhuma técnica e a fase K-Água só pôde ser caracterizada por PXRD. Os compostos K-DMSO, K-PEO e K-PHB tiveram sua morfologia estudada por microscopia eletrônica de varredura (MEV).

A partir dos dados da difração de raios-X pôde-se atribuir valores de índice de intercalação (II) para os compostos preparados, exceto para as fases K-Acetato e K-Metanol. Dos dados da análise térmica foi possível, nos casos em que se conhecia o II, determinar a estequiometria dos compostos intercalados. Os dados de FTIR mostraram-se úteis para demonstrar a ausência de contaminantes no produto final, assim como para comprovar as interações estabelecidas entre a matriz e o intercalante. As análises por microscopia eletrônica de varredura ajudaram a elucidar a morfologia dos nanocompósitos argilomineral/polímero assim como a verificar os danos sofridos pela matriz nestes compostos e no composto K-DMSO.

Composto K-DMSO

O composto obtido com a intercalação do DMSO na caulinita apresentou-se de acordo com o observado na literatura. Foi constatada uma expansão interplanar basal de 0,404 nm e uma distância interplanar basal de 1,121 nm. O índice de intercalação máximo obtido não passou de 83,5%, abaixo dos 90% já reportados pela literatura. Este fato pode ser explicado por características morfológicas dos cristalitos da caulinita.
utilizada, que poderia ter algumas lamelas “soldadas” por SiO₂ amorfo nas suas bordas.

Dos dados de análise térmica, pode-se atribuir a estequiometria de K(DMSO)₀,₄₀ para o composto obtido.

A análise de FTIR revelou-se de acordo com o já reportado anteriormente na literatura, exceto pela presença de algumas evidências da presença de água co-intercalada, estabelecendo ligações de hidrogénio com a matriz.

Composto K-Acetato

Apesar de ter sido obtido por método diferente do usualmente reportado, este composto manteve as características esperadas para ele. O método de intercalação por moagem a seco mostrou sua maior diferença da intercalação via úmida no aspecto da maior fragmentação dos cristalitos da matriz, sendo obtido um produto com cristalinidade mais baixa com o método aqui descrito.

O composto apresentou uma expansão interplanar basal de 0,690 nm e uma distância interplanar basal de 1,406 nm. Seu índice de intercalação não pode ser calculado devido à superposição da primeira reflexão basal da caulinita não intercalada coincidir com a segunda reflexão basal do composto intercalado.

Dos resultados da análise térmica, não foi encontrada evidência que mostrasse excesso de acetato de potássio não
Intercalado no composto final. Entretanto, a estequiometria do composto não pode ser calculada devido ao desconhecimento do composto final obtido após a calcinação, assim como pela falta de um valor de índice de intercalação.

As análises de FTIR encontraram-se de acordo com o que já havia sido anteriormente discutido para este composto. As principais diferenças foram devidas à síntese da fase K-Aacetato ter sido realizada por reação no estado sólido, o que implicou num II menor do que o usualmente encontrado, fazendo com que algumas bandas da caulinita não intercalada continuassem presentes.

Também foi sugerido que a expansão de 1,4 nm da fase K-Aacetato seja sustentada pela presença de água co-intercalada, que estabeleceria pontes entre o íon acetato e as hidroxilas da matriz.

Composto K-NMP

O composto K-NMP, pela primeira vez reportado, apresentou uma expansão interplanar basal de 0,514 nm e uma distância interplanar basal de 1,231 nm. Foi obtido um índice de intercalação de 85%.

Pelos dados de análise térmica foi obtida uma estequiometria de K(NMP)_{0.39}. Ficou também mostrada a grande estabilidade térmica da fase intercalada, que tem a matéria orgânica eliminada apenas em 427°C, temperatura comparável à da
eliminação de grupamentos orgânicos ligados covalentemente à matriz (derivados organo-funcionalizados).

A análise de FTIR do composto deixa clara a presença da NMP no interior da matriz, assim como mostra que a molécula orgânica sofreu restrições estéricas no interior da mesma, uma vez que alguns de seus modos de estiramentos antes mal-resolvidos, passaram a ter maior separação energética após a intercalação. No entanto, não foram verificadas novas bandas de absorção, que seriam esperadas caso houvesse uma grande interação (por ligações de hidrogênio) entre as moléculas de NMP e a matriz. Com isso, foi proposto que a alta estabilidade térmica do composto K-NMP deve-se mais a fatores estéricos e conformacionais da molécula de NMP no interior da caulinita (estando provavelmente, parcialmente encaixada na cavidade ditrigonal da folha de sílica), do que à ligações químicas com a matriz. Somente estudos mais detalhados poderão revelar o real motivo da alta estabilidade térmica desta fase, ao elucidar sua estrutura tridimensional.

Dos dados de PXRD, análise térmica e FTIR, ficou mostrado que não há excesso de NMP não intercalada no composto assim como de DMSO residual. Uma reação de controle, realizada com NMP e caulinita pura mostrou que a pré-expansão com o DMSO é fundamental para a entrada da NMP na caulinita.
Composto K-Bz

O composto caulinita/benazida, também reportado pela primeira vez, apresentou uma expansão interplanar basal de 0,714 nm e uma distância interplanar basal de 1,429 nm. O índice de intercalação, calculado indiretamente por meio de normalização de difratogramas foi de 73%.

Baseado numa modelagem do tamanho da molécula de benazida e no valor da expansão sofrida pela matriz com a intercalação, supôs-se que a molécula intercalante poderia estar em um ângulo máximo de 68º em relação ao plano da matriz.

Dos dados de análise térmica pôde-se atribuir uma estequiometria de K(Bz)0,32 para o composto obtido. No entanto este valor pode ser ligeiramente diferente, devido à incerteza no valor do II. Verificou-se também que a benzamida é eliminada da matriz em três passos consecutivos numa região entre 140ºC e 314ºC.

Pela análise dos dados de FTIR, com a verificação do aparecimento de novas bandas de absorção, foi mostrado que a benzamida intercalada interage por ligações de hidrogênio tanto com as três (geometricamente) diferentes hidroxilas da matriz pela sua carbonila quanto com os oxigênios da folha de sílica da lamela subjacente pelos seus grupamentos NH₂, estabelecendo, assim, uma "ponte" entre duas lamelas consecutivas. Estudos estruturais mais avançados ainda são
necessários, a fim de explicar e estrutura tridimensional do composto K-Bz.

Além de ter ficado evidenciada a grande interação intercalante-matriz, também ficou claro – e em concordância com os dados de PXRD e análise térmica – que não havia benzamida não-intercalada em excesso no composto assim como DMSO residual. Do modo análogo ao composto K-NMP, uma reação de controle mostrou que a pré-expansão com o DMSO é indispensável para a entrada da benzamida na matriz.

Compostos K-PEO e K-PHB

Ambos os compostos foram reportados pela primeira vez, e apresentaram as seguintes características, obtidas por PXRD: K-PEO: $d = 1,116 \text{ nm}$, $\Delta d = 0,399 \text{ nm}$ e $II = 78,9\%$. K-PHB: $d = 1,1170 \text{ nm}$, $\Delta d = 0,453 \text{ nm}$ e $II = 77,3 \text{ nm}$. Estes valores estão de acordo com o esperado para a intercalação de monocamadas deitadas e levemente achatadas dos polímeros e plenamente concordantes com o que já foi reportado para intercalações com outras matrizes.

Dos resultados das análises de TG/DSC, foram atribuídas as seguintes estequiometrias aos nanocompósitos: $K(PEO)_{3,24}$ e $K(PHB)_{6,66}$. Das análises térmicas também foi verificado que os polímeros têm sua estabilidade térmica elevada quando confinados no interior da matriz.
Os resultados das análises por FTIR puderam ser considerados como de acordo com o que já havia sido reportado para intercalações semelhantes, como com o composto K-Polietilenoglicol, mesmo sem o surgimento de novas bandas, que indicariam presença de ligação de hidrogênio entre o polímero intercalado e a matriz.

Também foi verificado que o processo de intercalação por fusão gera cadeias poliméricas até certo ponto degradadas devido à oxidação atmosférica, podendo haver certa quantidade de material intercalado que possa ser considerado como produto de decomposição parcial do polímero original.

Finalmente, as análises por microscopia eletrônica de varredura revelaram uma morfologia bastante compacta para o material, que tende a se orientar de acordo com os planos basais dos cristalitos. Sob alta magnificação, foi visto que os cristalitos foram fortemente danificados pelos processos de intercalação e que uma pequena quantia de polímero não intercalado pode estar envolvendo-os, muitas vezes até em monocamadas, fazendo com que tenham grande coesão entre si, gerando uma massa compacta, com certo aspecto de cerâmica sinterizada, vista sob baixa magnificação.

Os nanocompósitos descritos possuem um potencial de aplicações bastante elevado, no entanto, para tal feito, outros estudos ainda são necessários, como a avaliação da
influência do grau de esfoliação da matriz e as propriedades mecânicas destas e de outras fases, preparadas variadamente.

Compostos K-Metanol, K-Água e K-Hidr

Durante a síntese da caulinita hidratada, três fases diferentes foram preparadas. A primeira delas, K-Metanol, não pode ser caracterizada devido à sua alta instabilidade e rápida desintercalação do metanol assim que é retirado deste solvente. A fase instável denominada K-Água, ainda úmida, pode ser caracterizada apenas por PXRD e revelou \(d = 0,995 \) nm e \(\Delta d = 0,279 \) nm. O índice de intercalação desta composto foi de 84,6%. Sugere-se que esta fase possivelmente contém algum metanol co-intercalado com a água, na matriz da caulinita.

Após a secagem da fase K-Água a temperatura ambiente, obteve-se a fase estável denominada K-Hidr (caulinita hidratada) que foi caracterizada por PXRD e TG/DSC. Esta fase revelou \(d = 0,848 \) nm, \(\Delta d = 0,132 \) nm e \(II = 65,8\% \). Dos dados da análise térmica foi encontrada uma estequiometria de \(K(H_2O)_{0,83} \) para uma amostra que possuía índice de intercalação de 58,3\%, que foi usada por possuir menos umidade.

A análise da fase K-Hidr por FTIR não revelou diferenças significativas para os compostos já anteriormente descritos, além das devidas ao baixo II.
Compostos K-Anilina e K-PANI

O composto K-Anil, apresentou uma distância interplanar basal de 1,474 nm e uma expansão interplanar basal de 0,758 nm, o índice de intercalação obtido foi de 77,2%.

Dos dados da análise térmica foi obtida uma esteguimetria de $K(C_6H_5NH_2)_{0,15}$ para o composto considerado intercalado com anilina e $K(C_6H_5NH_3^+Cl^-)_{0,11}$ para o composto considerado intercalado com o cloreto de anilino.

A análise de FTIR do composto K-Anil não revelou evidência espectral alguma da intercalação da anilina na caulinita, apresentando apenas um pico e uma banda referentes ao precursor K-Hidr. No entanto os dados de PXRD e TG/DSC deixam suficientemente evidenciada a intercalação da anilina na matriz.

As análises dos compostos K-PANI e K-PANI' por PXRD, TG/DSC e FTIR não foram suficientemente conclusivas para mostrar que houve a polimerização da anilina no interior da matriz de caulinita, mesmo havendo a presença do polímero livre e do íon anilínio no composto, que puderam ser parcialmente retirados por extensivas lavagens com NMP.

Novas estudos e diferentes tentativas experimentais de polimerização ainda são necessárias para a possível obtenção do composto caulinita/polianilina.
Outras tentativas de síntese

Pelos resultados da difração de raios-X das várias amostras das outras tentativas de síntese (não mostrados), ficou evidenciado que nenhuma das reações produziu composto de intercalação com a caulinita.

Conclusões finais

O campo de pesquisas em intercalação em argilominerais é bastante amplo, e o presente trabalho revelou que com poucos experimentos, e sínteses relativamente simples, um grande número de informações podem ser extraídas utilizando-se de poucas técnicas analíticas. E, mesmo que algumas elucidações e fundamentações para os fenômenos aqui brevemente apresentados ainda estejam em fase inicial de pesquisa (parecendo até, por vezes, mal explicados), isto não impede nem implica em um atraso na utilização das potencialidades destes materiais, que já se verifica até em nível industrial.

Resta-me a certeza de que investimentos neste campo, conjugando desde a pesquisa básica e chegando na busca de aplicações e implementação em nível industrial, certamente serão bem recompensados, em um futuro não muito distante.
REFERÊNCIAS

45) GARDOLINSKI, J. E.; WYPYCH, F; CANTÃO, M. P. Esfoliação e hidratação da caulinita após intercalação com ureia. Quím. Nova. NO PRELO.

52) JACKSON, M. L.; ABDEL-KADER, F. H. Kaolinite intercalation procedure for all sizes and types with x-ray diffraction spacing distinctive from other phyllosilicates. Clays Clay Min. 26, 2, 81-87. 1978.

83) GARDOLINSKI, J. E.; CANTÃO, M. P.; WYPYCH, F. Compostos de intercalação derivados da caulinita. Quim. Nova. NO PRELO.

85) CHENG, S. From layer compounds to catalytic materials. Catalysis Today. 49, 303-312. 1999.

ANEXOS

ARTIGOS PUBLICADOS REFERENTES AOS TRABALHOS DA DISSERTAÇÃO

ANEXO 1 - ARTIGO REFERÊNCIA [34]

Preparation and Characterization of a Kaolinite-1-methyl-2-Pyrrolidone Intercalation Compound

José Eduardo Gardolinski, Patricio Peralta-Zamora, and Fernando Wypych

Department of Chemistry, Federal University of Paranaíba, P.O. Box 19081, CEP 81531-990, Curitiba-PR, Brazil

Received August 17, 1998; accepted November 9, 1998

Well-crystallized kaolinite was initially reacted at 60°C with a water–dimethyl sulfoxide mixture. After washing and characterization, the resulting material (Al₃Si₂O₇(OH)₄(DMSO)ₓ₃,y) was reacted with 1-methyl-2-pyrrolidone (NMP) at room temperature. The product was a light yellow powder with a stoichiometry that attests to the quantitative substitution of the DMSO by the NMP molecules. (Al₃Si₂O₇(OH)₄(NMP)ₓ₃,y) was characterized by X-ray diffractometry, thermal analysis (simultaneous TG and DSC), and FTIR. The fact that the NMP molecules are located in the interlamellar space of the kaolinite permits a notable enhancement of the thermal stability of the complex. While the DMSO-derived system decomposes at 175°C under air, the NMP complex remains stable up to 431°C.

Key Words: kaolinite; intercalation compounds; 1-methyl-2-pyrrolidone.

INTRODUCTION

Nowadays, it is possible to observe a massive interest in the preparation of nanocomposite materials by encapsulating organic macromolecules into the interlamellar space of layered inorganic materials. Basically, the popularization of these encapsulation reactions is due to the interesting properties that can be obtained when organic compounds are homogeneously incorporated into the inorganic matrix, principally those related to chemical, physical, and mechanical properties.

Clay minerals can interact with organic compounds by different mechanisms. As far as we know, intercalation reactions have been the more explored alternative, mainly for inorganic matrixes such as kaolinite, which can immobilize many organic compounds through strong hydrogen bonds into the silicate layer.

Kaolinite (Al₂Si₂O₇(OH)₄) is a dioctahedral 1:1 layered aluminosilicate, constituted by an octahedral sheet of gibbsite, hydrogen bonded to a tetrahedral sheet of silicate (1). The aluminol surface (Al-OH) of the gibbsite-type layer, with aluminum atoms coordinated octahedrally by oxygen atoms and hydroxyl groups, represents the side that permits grafting of organic compounds or solvation of the hydroxyl groups. However, the asymmetric constitution of the kaolinite, which involves a large dipolar interaction between the layers and provides the characteristic large cohesive energy, frequently makes intercalation difficult.

Even when the preparation of hybrid organic–inorganic materials by intercalation of organic molecules into kaolinite represents a clear possibility of new and interesting materials, this alternative has not been extensively explored. An important part of the current literature is concentrated on the utilization of 2:1 charged phyllosilicates, such as montmorillonite and hectorite. In these materials, the presence of exchangeable cations in the interlayer space greatly favors the preparation of hybrid materials (2–4).

Examples of kaolinite intercalation usually involve the use of small polar molecules, typically dimethyl sulfoxide, n-methylformamide, and hydrazine (5–7). The intercalation of other molecules is also possible; however, generally the process implies the prior intercalation of precursors such as the previously mentioned compounds (8).

Recently, the intercalation of polymeric compounds has been reported. Predominantly, the process implicates the previous intercalation of the precursor with subsequent thermally induced polymerization (9, 10); however, direct intercalation of the polymer has also been reported (11).

Another type of interlamellar modification of kaolinite was recently reported. The organofunctionalization process that involves surface grafting can be applied directly or indirectly by using pure kaolinite (12) or an expanded precursor with dimethyl sulfoxide (DMSO) (7, 13, 14), respectively. In these reactions, the organic groups are grafted to equivalent bonds to the kaolinite layers, which permits obtaining more thermally and chemically stable materials. Generally, to remove the organic fraction of hybrid compounds like that, high temperatures are necessary; consequently, the structure of the inorganic support is broken.

In the present work, the intercalation process of 1-methyl-2-pyrrolidone in a previously expanded kaolinite–DMSO complex is reported. The compound obtained was characterized by powder X-ray diffractometry, thermal analysis (simultaneous TG and DSC), and infrared spectroscopy (FTIR).

1To whom correspondence should be addressed. E-mail: wypych@quimica.ufpr.br. Fax: 0055-41-361-3286.
MATERIALS AND METHODS

Materials

Well-crystallized kaolinite PP-0559 was purchased from the Petrobrás Research Center (CENPES–Petrobrás–Rio de Janeiro, Brazil) and used without further purification. Chemical analysis by energy dispersive X-ray fluorescence spectrometry demonstrated the high purity of the material, which is contaminated only with small amounts of iron and titanium. Electron spin resonance measurements show small amounts of structural and nonstructural iron.

DMSO (Merck) and 1-methyl-2-pyrrolidone (NMP, Merck) were of reagent-grade quality and used without further purification.

Procedure

First, 9.0 g of kaolinite was dispersed in a mixture composed of 60 ml of DMSO and 5.5 ml of distilled water. The reaction was carried out at 60°C for a period of 10 days in a 50-ml flat-bottomed glass flask equipped with magnetic stirring. The resulting material was centrifuged at 4000 rpm and dried at 50°C for 24 h to eliminate the excess of DMSO (15).

Then 0.3 g of the expanded kaolinite–DMSO complex was reacted with 5 ml of NMP at room temperature, for a period of 7 days under stirring. The resulting material was centrifuged at 4000 rpm and dried at 50°C for 24 h. At the end of this process, a light yellow powder was obtained. For comparison, the same methodology was applied to pure kaolinite.

Characterization

For powder X-ray diffraction analysis, the solid material was placed in the form of an oriented film in a neutral glass sample holder. The measurements were done on a Rigaku diffractometer using Ni-filtered CuKα radiation (λ = 1.7902 Å) with a dwell time of 1° min⁻¹. All measurements were taken using a generator voltage of 40 kV and a current of 20 mA. Powder of metallic silicon was added to the samples and used as an internal standard. To remove undesirable radiation between the sample and the detector a homemade graphite monochromator was used (LORXI, Physical Department–UFPR).

The simultaneous TG-DSC measurements were done on a Netzsch STA-409 EP series equipment under a static air atmosphere. Samples of about 20 mg were placed in alumina crucibles and heated between 30 and 950°C at a rate of 5°C min⁻¹, using empty crucibles as a reference.

FTIR spectra between 400 and 4000 cm⁻¹ were obtained on a Bomem Michelson MB 100 FTIR spectrometer using 50 averaged scans at 2 cm⁻¹ resolution. The solid samples were prepared as KBr pellets (ca. 3% by mass in KBr) while pure NMP was measured between two pellets of KBr.

RESULTS AND DISCUSSION

When kaolinite was reacted with DMSO a white expanded kaolinite–DMSO complex was obtained with an intercalation ratio of about 83.5%. The basal space of this modified material was 11.21 Å, which represents an expansion of 4.04 Å, related to the basal space of the raw kaolinite (7.16 Å). In the subsequent NMP intercalation reaction, a light yellow material was obtained with an intercalation ratio of about 85% (dried at 60°C). The basal spacing of the NMP–kaolinite complex was 12.31 Å, which represents an expansion of 5.14 Å.

For comparative purposes, the same NMP intercalation procedure was applied to pure kaolinite. In this case, intercalation was not observed even after a reaction time of 7 days, which attests to the need for the expanded DMSO-intermediate for the subsequent NMP intercalation process.

The extent of the modification process was determined from the X-ray diffractograms given in Fig. 1, where (a) represents the K(DMSO)x precursor, (b) the K(NMP)y phase, and (c) the raw kaolinite. The intercalation percentage was calculated as the quotient between the intensity of the first basal reflection of the new phase and the sum of this signal plus the signal of the nonreacted kaolinite.

The interlayer distances given in Table 1 were obtained from the powder X-ray diffractograms, using the reflection of the highest possible order (5 for both modified phases).

The results of the TG/DSC analyses are presented in Fig. 2.
For pure kaolinite (results not shown) two endothermic peaks can be observed; the first, related to elimination of adsorbed (or absorbed) water, is centered at 51°C while the second, attributed to the dehydroxylation process to metakaolinite (16), is centered at 529°C.

The K(DMSO)₄ phase (Fig. 2a) also presents two endothermic peaks, one centered at 175°C, which can be attributed to DMSO elimination, and the other centered at 509°C that corresponds to the kaolinite dehydroxylation process. Considering the concentration of nonreacted kaolinite (near of 16.5%) and the humidity of the material (0.7%), the measured lost of organic matter (8.8%) was in concordance with the theoretical value obtained from the proposed formula (8.8%). The concentration of the final residue (79%) is in agreement with the decomposition of nonreacted kaolinite and the intercalated material (theoretical value, 78.5%; see Table 2). Due to the relatively low temperature of DMSO elimination (175°C), it is possible to assume that the process involves integral elimination of the molecule instead of combustion. This fact is corroborated by the absence of any exothermic peak that could be attributed to DMSO combustion, even when the experiments were carried out in an air atmosphere.

The K(NMP)₄ phase (Fig. 2b) presents a small endothermic peak centered at 329°C, an exothermic peak centered at 427°C, and an endothermic peak centered at 552°C. For the first peak, which represents a small loss of mass (ca. 1%, related to the dried material), a plausible attribution was not possible. The exothermic peak is related to the combustion of the organic matter while the second endothermic peak corresponds to the matrix dehydroxylation process (16). Considering that the residual kaolinite was 31.2% (sample dried at 150°C for 24 h) and the humidity 0.5%, the experimental loss of mass up to 483°C (burning of organic matter) is in agreement with the theoretical result (9.3%; see Table 2). The theoretical concentration of the total residues (78%) was in agreement with the experimental value (78.4%; see Table 2).

Stoichiometric calculations were performed by considering the purity of the material, obtained from the powder X-ray diffractograms, and assuming that the organic matter was completely removed from the system at the temperatures mentioned above. For pure kaolinite, a 13.6% mass loss related to a dehydroxylation process was observed (endothermic peak centered at 529°C) when the mass of eliminated absorbed

TABLE 1

Identification of the Phases, Basal Distances (d_{001} (Å)), and Interlayer Expansions ($Δd = d_{001}$ (of the substituted phase) − d_{001} (of kaolinite) (Å))

<table>
<thead>
<tr>
<th>Phase</th>
<th>d_{001} (Å)</th>
<th>$Δd$ (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>7.16</td>
<td>0</td>
</tr>
<tr>
<td>K(DMSO)$_4$</td>
<td>11.21</td>
<td>4.04</td>
</tr>
<tr>
<td>K(NMP)$_4$</td>
<td>12.31</td>
<td>5.14</td>
</tr>
</tbody>
</table>

TABLE 2

Theoretical and Experimental Values Related to the Proposed Formula of the Compounds and the TG/DSC Results, Respectively

<table>
<thead>
<tr>
<th>K(DMSO)$_4$</th>
<th>Theoretical (% m/m)</th>
<th>Experimental (% m/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercalation ratio</td>
<td>—</td>
<td>83.5</td>
</tr>
<tr>
<td>Humidity</td>
<td>—</td>
<td>0.7</td>
</tr>
<tr>
<td>Organic matter</td>
<td>8.8</td>
<td>8.8</td>
</tr>
<tr>
<td>Burning residue</td>
<td>78.5</td>
<td>79.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K(NMP)$_4$</th>
<th>Theoretical (% m/m)</th>
<th>Experimental (% m/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercalation ratio</td>
<td>—</td>
<td>68.8</td>
</tr>
<tr>
<td>Humidity</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Organic matter</td>
<td>9.3</td>
<td>9.3</td>
</tr>
<tr>
<td>Burning residue</td>
<td>78.0</td>
<td>78.4</td>
</tr>
</tbody>
</table>

* Dried at 150°C for 24 h.

FIG. 2. TG/DSC measurements of the K(DMSO)$_4$ (a) and K(NMP)$_4$ (b) phases.
water is previously discounted (endothermic peak centered at 51°C). This result was in agreement with the theoretical value of 12.96% and confirms, together with the X-ray diffraction and X-ray fluorescence results, the high purity of the raw kaolinite. Thus, an impurity concentration of about 3% was estimated, which consists basically of structural iron and titanium.

Considering the results of the thermal analysis, it is possible to estimate that the stoichiometry of the compounds are \(\text{K(DMSO)_{0.40-0.06}} \) and \(\text{K(NMP)_{0.39-0.02}} \) which imply that the solvation with the NMP molecules take place by the substitution of the previously intercalated DMSO molecules. After drying the sample \(\text{K(NMP)}_n \) at 150°C the intercalation ratio drops to 69% but the stoichiometry (calculated in relation to the intercalated sample) was almost the same. The fact that an endothermic peak was not observed in the thermal analysis of the \(\text{K(NMP)}_n \) phase near of 175°C (the temperature of DMSO elimination) indicates that the substitution process was quantitative.

The temperature of the organic matter elimination process for the \(\text{K(NMP)}_n \) phase (431°C) was notably higher than that observed for the \(\text{K(DMSO)}_n \) precursor (175°C). This notable thermal stability is comparable to those exhibited by organo-functionalized compounds, in which the organic groups are covalently bonded to the lamellar silicate matrix.

All the experimental parameters extracted from the thermal analysis and the respective theoretical values calculated from the proposed formula of the compounds are given in Table 2. The FTIR measurements for kaolinite (a), NMP (b), and \(\text{K(NMP)}_n \) (c) are given in Fig. 3. The observed peaks (Table 3) are coherent with the attributions reported in the literature (1. 5, 17–18) and confirm the existence of a NMP molecule in the interlamellar space of the kaolinite. The splitting of the C-H stretching modes in the region of 2800–3000 cm\(^{-1}\) was well discussed for the intercalation of polyethylene oxide into kaolinite (11) and montmorillonite (2). Contrary to the results obtained for the intercalation of DMSO (18) and polyethylene glycol into kaolinite (11), the hydroxyl groups stretching bands (region of 3600–3700 cm\(^{-1}\)) are not very much influenced by the intercalation of NMP.

CONCLUSIONS

The results reported here confirm that the intercalation of the NMP molecules into the interlayer space of kaolinite is not possible unless an expanded precursor is used. In this case, NMP molecules quantitatively substituted DMSO of the precursor, generating a compound that corresponds to the stoichi-
The intercalation of polar molecules through solving of the interlamellar hydroxyl groups is not a great innovation; however, the thermal stability of the K(NMP)$_{0.4}$ phase is markedly high. The compound remains stable up to 329°C, losing the organic groups only at 430°C when under air atmosphere. On the other hand, the decomposition of the K(DMSO)$_{0.4}$ phase occurs at a temperature of about 175°C.

During the substitution process of the DMSO molecules, the intercalation ratio stays a constant 83.5% (with DMSO) and 85.1% (with NMP) when the sample is dried at 50°C. After drying the K(NMP), at 150°C for 24 h, the intercalation ratio is reduced to 68.8%, indicating that part of the material is regenerated to kaolinite, although the corrected stoichiometry (related to the intercalated phase) remains almost constant, indicating that the removing of some NMP molecules regenerates the pure kaolinite.

FTIR data show characteristic peaks of the NMP compound, indicating its existence in the interlamellar space of the kaolinite. However, the low intensity of the peaks attributed to the NMP molecule that results from the low concentration of the organic material in the matrix of kaolinite and the low transparency of the pellets impedes a more detailed examination of the FTIR spectra. Similar to the TG/DSC measurements, no peak that could be attributed to DMSO was observed in the FTIR spectra of the NMP derivative.

ACKNOWLEDGMENTS

To the Physics Department of UPPE for the use of the X-ray diffractometer and the Chemistry Department for the FTIR measurements (Mr. Angelo R. S. Oliveira). The authors thank Prof. Carol H. Collins for English revision of the manuscript.

REFERENCES

ANEXO 2 - ARTIGO REFERÊNCIA [33]

Intercalation of Benzamide into Kaolinite

José Eduardo Cardolinski, Luiz Pereira Ramos, Gabriel Pinto de Souza, and Fernando Wypych

Research Center in Applied Chemistry, CEPESQ, Department of Chemistry, Federal University of Paraná, UFPR, P.O. Box 19081, 81531-990 Curitiba, PR, Brazil; and | Research and Development Central Laboratory, LAC-COPEL, P.O. Box 19067, 81531-990 Curitiba, PR, Brazil

Received June 17, 1999; accepted October 8, 1999

Well-crystallized kaolinite (K) was initially reacted at 60°C with a water/dimethylsulfoxide (DMSO) mixture and the resulting intercalation derivative (K-DMSO) was characterized by powder X-ray diffractometry (PXRD), thermal analysis (simultaneous TG and DSC), and Fourier-transformed infrared spectroscopy (FTIR). Benzamide crystals were then melted with the K-DMSO derivative at 140°C for 4 days, when a gradual displacement of DMSO by benzamide was observed within the interlayer spacing of the modified kaolinite. The resulting material, after extensive washing with acetone, was characterized and compared to the results obtained previously for the K-DMSO composite. Benzamide intercalation proceeded by gradual displacement of DMSO molecules until completion. The structural stabilization of the K-BZ derivative was explained through the establishment of hydrogen bonds between the carboxyl oxygen atoms of the intercalated benzamide and alumino groups present at the surface of the kaolinite layer. The interlamellar spacing of K-BZ was shown to be possibly occupied by benzamide molecules that were located at a 68° orientation in relation to the layer surface. Unlike most intercalation molecules such as DMSO, variations in the interplanar spacing of kaolinite were consistent with the nonkeying of any other part of the molecule between the alumino silicate interlayers.

Key Words: kaolinite; benzamide; intercalation compounds.

INTRODUCTION

Composites obtained through mechanical blending of two or more components of different nature have been increasingly used for a number of applications such as in the manufacturing of construction materials and accessories to the automotive industry.

Nanocomposites, or composite materials that are obtained by mixing components at the molecular level, are one of the newest materials of this category. In this regard, nanocomposites with special properties can be obtained from layered aluminosilicates and these materials are usually developed by exploiting the utilization of intercalation compounds that can synergistically modify the matrix properties.

One of the most studied systems to date is the intercalation of synthetic polymers within layered aluminosilicates of the 1:2 type (smectite clays) (1–5). While being intercalated within the inorganic structure, organic polymers naturally reduce their structural mobility and some of them assume a highly organized conformation within the layered structure. In this way, it is possible to produce nanocomposites that usually present unique properties compared to the corresponding properties of the isolated starting materials and/or their mechanical blends.

Kaolinite is an excellent alternative for these intercalation reactions, even though their synthesis follows a totally different chemical pathway compared to the smectite clays. Kaolinite (K = Al₂Si₂O₅(OH)₄) is a layered aluminosilicate of the 1:1 type that is formed by two different types of interlayer surfaces. From one side, the lamellar face resembles the structure of gibbsite, with aluminum atoms coordinated octahedrally with oxygen and hydroxyl groups. The other face of the lamella resembles the structure of silica, where silicon atoms are coordinated tetrahedrally with oxygen atoms of the lattice (6). Therefore, hydroxyl groups are exposed at one side of the lamella (the Al side), whereas the other is surrounded by oxygen atoms (the Si side). Adjacent layers are linked to one another by hydrogen bonds involving both Al and Si groups (Al–O–H···O–Si). As a result of this close fitting, the tightly associated lattice of kaolinite is not accessible to intercalation compounds and this justifies its low susceptibility to chemical modification.

Regardless of the extensive use of kaolinite in industrial processes and its excellent characteristics for the preparation of organic/inorganic hybrid blends, there is little information about its use in nanocomposites. Of the few examples available in the literature, preparation of nanocomposites from kaolinite usually involves the direct intercalation of low-molecular-mass polar compounds within the lamellar structure. The most common compounds used for direct intercalation are dimethylsulfoxide (DMSO) and N-methyl formamide (NMF) among others (6–8).

Even though several kaolinite intercalation compounds have been reported in the literature (9–12), most organic compounds cannot be used for this purpose because they do not have the right polarity and chemical properties for intercalation. As a result, intercalation will not occur because the molecules cannot access the interlamellar inorganic structure of kaolinite.
INTERCALATION OF BENZAMIDE INTO KAOLINITE

In this fact, a new technique has been developed to enable intercalation of alternative compounds into kaolinite. Intercalation is therefore obtained after the interlamellar structure of kaolinite is expanded through preintercalation of solvents such as DMSO or NMF (13–19). This new intercalation strategy opened a new opportunity for the utilization of kaolinite in nanocomposites and enabled the production of new materials with desirable properties for industrial processes at a relatively low cost.

Recently, several groups have been successful in intercalating synthetic polymers within the kaolinite lattice. These polymers have been intercalated by: (a) heat polymerization of precursors that had been preintercalated within the kaolinite lattice (20, 21), (b) intercalation of melted polymers after treatment of kaolinite with an appropriate solvent (22, 23), and (c) expansion of kaolinite with an appropriate solvent followed by diffusion of the polymer through the preexpanded interlamellar spacing of the kaolinite matrix (24).

In this work, the preparation and characterization of a new benzamide/kaolinite derivative is described. The resulting composites were characterized by powder X-ray diffraction (XRD), thermal analysis (thermogravimetry and differential scanning calorimetry, TG and DSC), and Fourier-transformed infrared spectroscopy (FTIR). Evidence for the localization of the intercalated molecules within the interlamellar structure of kaolinite has been mostly obtained from XRD and FTIR analyses.

EXPERIMENTAL

The kaolinite sample employed in this work (PP-0559) was supplied by the Petrobrás Research Center (CENPES, Rio de Janeiro, Brazil) and came from the Amazon basin (Rio Capim deposit). Samples of kaolinite were pale yellow in color, showed high crystallinity indexes, and were slightly contaminated by titanium and iron. These contaminants were detected in kaolinite within levels of 3%, as determined by X-ray fluorescence and electronic paramagnetic resonance (data not shown). No crystalline impurities were detected by XRD and the bulk material was composed of very well separated thin platelet crystals with sharp defined angles. As a result, the number of superimposed layers was relatively low. This property was considered a key factor for the application of this material in paper coating.

Intercalation of Dimethylsulfoxide (DMSO) (6)

Approximately 9 g of raw kaolinite was transferred to a 250-mL erlenmeyer flask and suspended in 60 mL of DMSO (Merck PA) containing 5.5 mL of distilled water. The suspension was stirred at 60°C for 10 days and then centrifuged at 4500 rpm to recover the solids and discard the supernatant. The resulting material was dried at 30°C for 24 h to remove the residual DMSO and characterized by XRD (see below) immediately after drying. The fine pale yellow powder thus obtained was named K-DMSO fraction.

Intercalation of Benzamide (BZ)

Approximately 0.5 g of the K-DMSO fraction was carefully mixed with 1.5 g of benzamide (Merck PA) and the resulting mixture was heated at 140°C for 4 days in the presence of air. The reaction mixture was then washed thoroughly with acetone (Merck PA) and the modified kaolinite (K-BZ derivative) was recovered as a pale yellow powder and dried at 60°C for 48 h.

A control reaction was carried out by treating 0.5 g of raw kaolinite with 1.5 g of benzamide in the absence of DMSO.

Analysis by Powder X-ray Diffraction

For powder X-ray diffraction analysis, the solid material was placed as an oriented film in a neutral glass sample holder. Experimental measurements were obtained from a Rigaku diffractometer using Ni-filtered CuKα radiation (λ, 1.7902 Å) with a dwell time of 1° min⁻¹. All measurements were taken using a generator voltage of 40 kV and a generator current of 20 mA. Metallic silicon was used as internal standard. To remove undesirable radiation between the sample and the detector, a homemade graphite monochromator was used (LORXI, Department of Physics, UFPR).

The apparent intercalation ratio (I.R.) of both K-DMSO and K-BZ was determined from their X-ray diffraction using

\[
I.R. = \frac{\text{intensity (first peak) \times intercalate\%}}{\text{intensity (first peak) \times kaolinite\%}}
\]

Thermal Analysis

Both thermogravimetry (TG) and differential scanning calorimetry (DSC) were carried out simultaneously on a Netzsch Analyzer, Model STA 409. The experiments were carried out at an oxygen flow rate of 70 mL/min using 0.085-M alumina crucibles. After calibrating the equipment, approximately 15 mg of each sample was analyzed between 30 to 1000°C at 8°C/min. Calibration was performed with empty crucibles under the same experimental conditions and the calibration curve was immediately subtracted from all the experimental results. For the stoichiometric calculations, the TG measurements were performed in a Netzsch TG 209 equipment with an oxygen flow rate of 15 mL/min (data not shown). These measurements were also corrected as reported for the TG/DSC experiments.

FTIR Spectroscopy

FTIR spectroscopy was carried out in a Bomem Michelson FTIR Spectrophotometer, Model MB100. KBr discs were prepared after mixing each of the test samples with dry KBr. Analyses were performed in the transmission mode between 400 and 4000 cm⁻¹, with a resolution of 4 cm⁻¹ and approximately 50 scans.
RESULTS AND DISCUSSION

Intercalation of benzamide into kaolinite was carried out after the kaolinite matrix had been preintercalated (or expanded) with DMSO. The DMSO-intercalated kaolinite (K-DMSO fraction) was shown to be pale yellow powder with an I.R. of 81.5% and basal lattice parameter of 11.21 Å, which represents a lattice expansion of 4.04 Å in relation to the raw kaolinite (basal lattice parameter of 7.16 Å).

The benzamide-intercalated kaolinite (K-BZ fraction), obtained from K-DMSO, was also shown to be a pale yellow powder with an I.R. of 73% and a basal lattice parameter of 14.29 Å, which represents a lattice expansion of 7.14 Å in relation to raw kaolinite. In this case, the I.R. could not be directly calculated from the X-ray diffractogram because the second reflection of the K-BZ fraction (θ = 7.14 Å) and the first reflection of the raw kaolinite (θ = 7.16 Å) were almost completely superimposed. Therefore, measurements for I.R. calculations were performed in K-BZ only after its normalized X-ray diffractogram was subtracted from the K-DMSO normalized X-ray diffraction background.

For the experimental control, in which raw kaolinite was used in the absence of DMSO, there was no evidence that benzamide could be intercalated in the kaolinite host, suggesting that pre-treatment with DMSO (displacement method) is a requirement for the successful inclusion of this intercalation compound.

The X-ray diffractograms of (a) pure benzamide, (b) raw kaolinite, and both (c) K-DMSO and (d) K-BZ composites are collectively shown in Figure 1, where the diffraction pattern of the internal standard (powdered metallic silicon) is labeled with an asterisk (*). It is interesting to observe that raw kaolinite had the tendency to be oriented in the sample holder showing only (00) reflections. This special behavior is related to the morphology of the crystals that grow in large and thin platelets, as observed by scanning electron microscopy (22, 25).

Figure 1 clearly indicates that there was no evidence for K-DMSO or crystalline benzamide in the K-BZ X-ray diffractogram, indicating that benzamide substitution was fully accomplished and that the only crystalline materials found within the matrix were kaolinite and the resulting K-BZ intercalation compound. To facilitate interpretation of Fig. 1, the basal reflections of pure kaolinite, K-DMSO, and K-BZ have been respectively labeled by K1, K2, and K3. However, the “n” values observed in this figure do not represent normal indexations because it was not possible to determine whether kaolinite suffered any structural transitions after intercalation.

Table 1 summarizes the data obtained by X-ray diffractometry. Basal interplanar spacings (d[001], Å) were obtained in relation to the basal reflection of the highest order. These orders were normally within 3 or 4, depending on the type of material under analysis.

As stated above, there was no evidence that any DMSO had remained intercalated within the K-BZ matrix, unless at a relatively low concentration that would not interfere with the measured interplanar spacing. In fact, this possibility could not be totally discarded because there was no attempt to measure DMSO in K-BZ by thermogravimetry/mass spectrometry (TG/MS). On the other hand, pure benzamide was completely absent from the X-ray diffractogram of K-BZ.

Variations in interplanar spacing were determined by subtracting the basal lattice parameter of the intercalated kaolinite from the basal lattice parameter of raw kaolinite (7.16 Å).

The molecular dimension of benzamide, measured between the p-substituted aromatic hydrogen and the oxygen atom of the carbonyl group, was determined as 7.7 Å using a modeling software (Hyperchem version 4.5) (26). Therefore, based on the 7.14 Å variation in the kaolinite interplanar spacing after intercalation, it seems that only one type of hydroxyl group is interacting directly with a single intercalated benzamide molecule and that each intercalated molecule is displaced at an angle of 68° in relation of the plane of the kaolinite layer. In fact, this

TABLE I

<table>
<thead>
<tr>
<th>Phase</th>
<th>d (Å)</th>
<th>Δd (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>7.16</td>
<td>0</td>
</tr>
<tr>
<td>K-DMSO</td>
<td>11.21</td>
<td>4.04</td>
</tr>
<tr>
<td>K-BZ</td>
<td>14.29</td>
<td>7.14</td>
</tr>
</tbody>
</table>
assumption is consistent with the 50 to 75° orientation angle that is normally assumed by hydroxyl groups at the surface of the kaolinite layer (27).

Figure 2 shows the TG/DSC/DTG measurements made on raw kaolinite (Fig. 2A) and on the K-BZ intercalation compound (Fig. 2B). For raw kaolinite, the 0.7% mass loss observed at temperatures below 250°C was assigned to the loss of humidity. After that, the dehydroxylation of kaolinite into metakaolinite was observed as an endothermic peak centered at 532°C (19). This process generated a mass loss of 14.1%, in good agreement with the 13.96% value predicted from the theoretical formula of pure kaolinite (Al₂Si₂O₅(OH)₄).

The DTG curve also showed that the removal of water takes place in only one single peak, suggesting that dehydroxylation occurred as one isolated process. However, it is also possible that this single peak represents a wide range of unresolved and therefore overlapped processes. On the other hand, the exothermic peak centered at 985°C was attributed to the crystallization of both Si and Al oxides (19).

The K-BZ phase presented one small endothermic peak at 60°C, readily assigned to the loss of adsorbed water (0.5% mass loss), and one broad endothermic band centered at 225°C, followed by two endothermic peaks with their average intensities centered at 314 and 341°C, respectively. These effects were collectively attributed to the loss of organic matter from the kaolinite host. As both processes were characteristically endothermic, benzamide molecules appeared to be displaced from their interplanar spacing without being burned. However, the only real proof of benzamide being deintercalated unchanged would be a detailed TG/MS study of the deintercalated species, as stated above.

The endothermic peak centered at 514°C was associated with dehydroxylation of the lattice matrix, whereas crystallization was observed at 988°C as the last exothermic event of the DSC profile. These two processes were also observed in raw kaolinite at 532 and 985°C, respectively.

The complete absence of benzamide melting peaks (130°C) in the K-BZ thermal curves demonstrated that there was no excess of this compound within the intercalated derivative. The DTG curve also confirmed that the K-BZ sample decomposes in two isolated steps after dehydration. Assuming that K-BZ has nearly 9.6% organic matter in its chemical composition (dry basis), the overall mass loss for a K(BZ)₀.₃₂₄₀.₀₂ stoichiometry up to 350°C would theoretically correspond to approximately 9.57%. Indeed, there was a perfect agreement between this theoretical value and the data determined experimentally. Likewise, the amount of residues recovered after the experiment at 1000°C (77.6%) also revealed a perfect agreement with the expected theoretical value of 77.8% in relation to the K-BZ dry weight. After 300°C, no more organic matter was expected to be present in K-BZ and, assuming that the K-BZ has an I.R. of 73%, the experimental mass loss of 13.9% was in perfect agreement with both theoretical and experimental values obtained previously for raw kaolinite (13.96 and 14.1%, respectively).

Considering that, at temperatures above 350°C, all of the benzamide molecules had been completely removed from the kaolinite matrix, it is possible to conclude from the TG/DSC measurements that both intercalation derivatives have very similar stoichiometries, i.e., K(BZ)₀.₃₂₄₀.₀₂ and K(DMSO)₀.₆₄₁₀.₀₂. This observation suggests that the intercalation of benzamide molecules was dependent on the substitution of DMSO molecules from the host matrix. As the I.R. ratio is not precisely
TABLE 2

Theoretical and Experimental Values Derived from the Proposed Stoichiometry of the K-BZ Phase

<table>
<thead>
<tr>
<th></th>
<th>Theoretical (%, w/w)</th>
<th>Experimental (%, w/w)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-BZ, 71%</td>
<td>—</td>
<td>0.5</td>
</tr>
<tr>
<td>Moisture content</td>
<td>9.57</td>
<td>9.67</td>
</tr>
<tr>
<td>Organic matter</td>
<td>77.6</td>
<td>77.8</td>
</tr>
</tbody>
</table>

*On dry matter basis.

known, it is possible that the actual K-BZ stoichiometry is slightly different from that proposed above. Table 2 lists the theoretical and experimental values obtained from TG/DSC measurements of the K-BZ phase.

The TG/DSC measurements of the K-BZ phase also suggested that DMSO was completely substituted by benzonamide during intercalation of the K-DMSO derivative. This was supported by the complete absence of an endothermic peak at 189°C, which corresponds to the elimination of DMSO from the kaolinite matrix. However, the absence of an endothermic peak at 189°C does not in itself prove that there is no DMSO present within the K-BZ phase because deintercalation of any residual DMSO from K-BZ is unlikely to occur at this same discrete temperature range. We are currently pursuing the realization of FTIR analysis of the adsorbed gases that are obtained after pyrolysis of K-BZ as well as a detailed TG/MS analysis for a more informative characterization of the deintercalation process.

Figure 3 shows the FTIR spectra obtained from (a) raw kaolinite, (b) the K-BZ phase, and (c) pure benzonamide in two spectral regions, 400–2100 cm⁻¹ (Fig. 3A) and 2700–3900 cm⁻¹ (Fig. 3B). A tentative interpretation of the FTIR spectra is given in Table 3 on the basis of FTIR data available in the literature for raw kaolinite, K-DMSO, benzonamide, and others (13, 21, 23, 27–32).

The FTIR spectrum of the K-BZ derivative showed all the major FTIR bands attributed to kaolinite and benzonamide. However, there was no evidence for bands associated with DMSO and this confirmed the complete absence of any co-intercalated DMSO within the benzonamide-intercalated kaolinite (28, 30).

Compared to kaolinite, the FTIR spectrum of the K-BZ derivative showed variations within the region characteristically attributed to O–H axial deformations (3400–3800 cm⁻¹). There was a considerable increase in the absorption intensities at the 3647 cm⁻¹ region with the concomitant appearance of a shoulder at higher wavenumbers while both 3670 and 3696 cm⁻¹ bands remained relatively constant or even decreased in their relative intensities. This observation led to the hypothesis that, of the two (or three) different hydroxyl groups found in the surface of the kaolinite layered structure (27), only one contributed the most to the hydrogen bonding established directly with the intercalation compound.

The FTIR absorption band at 3619 cm⁻¹ has been previously attributed to hydroxyl groups that are embedded within the kaolinite matrix (28, 30). Figure 3 shows that the intensity of this band was not influenced by the intercalation process and this was

![FIG. 3. FTIR spectra of (a) untreated kaolinite, (b) K-BZ derivative, and (c) pure benzonamide at the lower (A, 400–2100 cm⁻¹) and higher (B, 2700–3900 cm⁻¹) spectral ranges.](image-url)
TABLE 3
Tentative Interpretation of the FTIR Spectra Shown in Fig. 3
(13, 21, 23, 26–32)

<table>
<thead>
<tr>
<th>Wavenumber</th>
<th>Attribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>3696</td>
<td>K: 3691—O–H surface</td>
</tr>
<tr>
<td>3670</td>
<td>K: 3666—O–H surface</td>
</tr>
<tr>
<td>3647</td>
<td>K: 3650—O–H surface</td>
</tr>
<tr>
<td>3639</td>
<td>K: 3619—O–H inner</td>
</tr>
<tr>
<td>3598</td>
<td>K: O–H — O=C</td>
</tr>
<tr>
<td>3549</td>
<td>K: O–H — O=C or H–O–H</td>
</tr>
<tr>
<td>3472</td>
<td>K: O–H — O=C</td>
</tr>
<tr>
<td>3391</td>
<td>B: 3370—N–H</td>
</tr>
<tr>
<td>3372</td>
<td>B: 3370—N–H</td>
</tr>
<tr>
<td>3180</td>
<td>B: 3176—N–H</td>
</tr>
<tr>
<td>1638</td>
<td>B: 1625—H–O–H; B: 1660—C=O</td>
</tr>
<tr>
<td>1606</td>
<td>B: 1603, 1617—N–H and/or H–O–H</td>
</tr>
<tr>
<td>1574</td>
<td>B: 1578—N–H</td>
</tr>
<tr>
<td>1447</td>
<td>B: 1449</td>
</tr>
<tr>
<td>1407</td>
<td>B: 1404</td>
</tr>
<tr>
<td>1300</td>
<td>B: 1298</td>
</tr>
<tr>
<td>1108</td>
<td>K: 1107—Si–O–Si</td>
</tr>
<tr>
<td>1083</td>
<td>B: 1073</td>
</tr>
<tr>
<td>1057</td>
<td>B: 1073</td>
</tr>
<tr>
<td>1034</td>
<td>B: 1026; K: 1033—Si–O</td>
</tr>
<tr>
<td>1007</td>
<td>B: 1001; K: 1006—Si–O</td>
</tr>
<tr>
<td>938</td>
<td>K: 938—O–H inner</td>
</tr>
<tr>
<td>914</td>
<td>B: 919; K: 913—O–H surface</td>
</tr>
<tr>
<td>879</td>
<td>K: 877</td>
</tr>
<tr>
<td>790</td>
<td>B: 792; K: 791—Si–O–Si</td>
</tr>
<tr>
<td>754</td>
<td>K: 752—Si–O–Si</td>
</tr>
<tr>
<td>692</td>
<td>K: 697—Si–O–Si</td>
</tr>
<tr>
<td>548</td>
<td>K: 538—Al–O–Si</td>
</tr>
<tr>
<td>472</td>
<td>K: 467—Si–O</td>
</tr>
<tr>
<td>431</td>
<td>K: 431—Si–O</td>
</tr>
<tr>
<td>411</td>
<td>B: 414; K: 411—Si–O</td>
</tr>
</tbody>
</table>

K = Kaolinite, B = Benzamide.

Previously, it has been proposed that external hydroxyl groups are also responsible for an absorption band at 936 cm⁻¹ in the FTIR spectrum of kaolinite, whereas internal hydroxyl groups contribute with a band located at 913 cm⁻¹. Figure 3 shows that the intensity of the former band (internal hydroxyl groups) in K-BZ decreases in relation to the latter (external hydroxyl groups) after intercalation. Therefore, this further evidence that the intercalated molecule was directly associated with the kaolinite matrix through hydrogen bonding (23, 28, 29).

The FTIR spectrum of pure benzamide showed a sharp, single absorption band at 919 cm⁻¹. Therefore, if any free benzamide were present in K-BZ, this band would have partially contributed to the relative intensity of the broader K-BZ band at 914 cm⁻¹ (internal hydroxyl groups). However, no other spectral evidence for free benzamide was found in K-BZ, particularly within the 1000–4000 cm⁻¹ region, suggesting that free benzamide was indeed absent from the K-BZ composite.

Additional variations in the FTIR spectra were observed within the 1500–1700 cm⁻¹ region, which corresponds to N–H and C=O deformation modes in amides. Based on the benzamide FTIR spectrum, the C=O stretching at 1660 cm⁻¹ was shifted to a band centered at 1638 cm⁻¹. Likewise, both N–H deformation modes located at 1578 and 1625 cm⁻¹ were detected as a single peak at 1574 cm⁻¹ with a shoulder at a slightly higher wavenumber. This is an additional evidence that, besides the C=O bond, the N–H bond in benzamide is also affected by the intercalation process.

CONCLUSIONS

Intercalation of benzamide within the matrix cannot be achieved without preexpansion of the lamellar structure of kaolinite with DMSO. Benzamide intercalation thus proceeds by gradual displacement of DMSO molecules.

The structural stabilization of the K-BZ derivative was explained through the formation of hydrogen bonds between the carbonyl oxygen atoms of the intercalated benzamide molecules and aluminoil groups present on the surface of the kaolinite layer. This observation was confirmed by both X-ray diffraction and FTIR spectroscopy, where peaks assigned to hydroxyl groups located externally to the layer surface were shifted toward lower wavenumbers. This same trend was observed for the carbonyl groups present in benzamide, which had their FTIR peaks either collapsed or considerably decreased in their relative intensities.

Unlike most intercalation molecules such as DMSO, variations in the interplanar spacing of kaolinite was consistent with the nonkeying of any other part of the molecule between the aluminoilate interlayers. The interlamellar spacing of the intercalation derivative was shown to be possibly occupied by benzamide molecules that were located at a 68° orientation in relation to the surface of the kaolinite layers.
ACKNOWLEDGMENTS

The authors gratefully acknowledge the technical support of Prof. Cesar Casais in utilizing the X-ray diffractometer and Mr. Angelo de Oliveira for providing us the FTIR spectra.

REFERENCES

25. The kaolinite samples derived from the Rio do Catinho deposit in the Amazon basin (Pará, Brazil) are composed of highly organized small platelets of 0.2 to 2 μm in length and ca. 80 nm in thickness; morphologically, these platelets have well-defined hexagonal edges and 120° crenated angles.
ANEXO 3 - ARTIGO REFERÊNCIA [37]

Layered polymer-kaolinite nanocomposites

J. E. GARDOLINSKI, L. C. M. CARRERA
CEPESQ, Research Center of Applied Chemistry, Department of Chemistry,
Federal University of Paraná (UFPR), P.O. Box 19081, 81531-990 Curitiba, PR, Brazil

M. P. CANTÃO
Research and Development Central Laboratory, Agreement UFPR/COPEL,
P.O. Box 19067, 81531-970 Curitiba, PR, Brazil

F. WYPYCH*
CEPESQ, Research Center of Applied Chemistry, Department of Chemistry,
Federal University of Paraná (UFPR), P.O. Box 19081, 81531-990 Curitiba, PR, Brazil
E-mail: wypych@quimica.ufpr.br

Kaolinite (K) was reacted with liquid dimethyl sulfoxide (DMSO) producing K(DMSO)$_{0.4}$. Highly ordered polymer/kaolinite materials were obtained by displacement of DMSO molecules in the K(DMSO)$_{0.4}$ intercalate by polyethylene oxide (PEO) or bacterial polyhydroxybutyrate (PHB), both in the melt state at 130°C and 180°C, respectively. The hybrid nanocomposites obtained were characterized by powder X-ray diffractometry (PXRD), Fourier Transform Infrared spectrometry (FTIR) and thermal analysis (simultaneous TG/DSC). The obtained results are consistent with the total replacement of DMSO molecules by the macromolecular linear chains that lie flat building a monolayer of the polymer in the interlayer space of kaolinite. The stoichiometry of the compounds estimated from the TG/DSC measurements are: K(DMSO)$_{0.40±0.02}$, K(PHB)$_{0.82±0.02}$, K(PEO)$_{0.50±0.02}$.

1. Introduction

Kaolinite (K) is one of the most ubiquitous clay minerals in the earth, mostly found in soils, sediments and sedimentary rocks and is one of the most important raw materials for industrial uses. This mineral is a hydrated aluminum disilicate possessing the ideal composition Al$_2$Si$_2$O$_5$(OH)$_4$. Kaolinite is a 1 : 1 dioctahedral clay mineral composed of structurally asymmetric layers. One side of layer is gibbsite-like with aluminum atoms coordinated octahedrally with apical oxygen atoms and hydroxyls. The other side of the layer is constituted by a silicate layer structure, where the silicon atoms are coordinated tetrahedrally to oxygen [1]. Thus the kaolinite structure is composed basically of a single silica tetrahedral sheet joined to a single alumina octahedral sheet with the oxygen planes exposed on one side of a layer and hydroxyls on the other.

Some examples of kaolinite intercalation with small polar molecules such as dimethyl sulfoxide (DMSO), N-methyl formamide (NMF), and hydrazine are frequently reported in the literature [2–5]. The intercalation of other compounds are also possible using the latter compounds as intercalated precursors using the so called “displacement method” [4, 6, 7].

Recently, many examples of polymer intercalated aluminosilicate have been reported [8–18]. Several methods were used to prepare these organic/inorganic hybrid materials involving the use of a clay suspension inside a polymer solution [8–11], the intercalation of entraining monomeric species followed by in-situ polymerization [12–18], by displacement of a previously formed intercalation complex [4, 6, 7] or mixing the clay directly with the liquid polymer melt to provide intercalation [12, 19–21]. In most of these examples of polymer/clay intercalation aluminosilicates of smectite group were used, where the hydration molecules of exchangeable ions of aluminosilicate are substituted by polymer molecules.

In spite of its great abundance, high crystallinity and high purity when compared with another mineral clays, only one example of kaolinite intercalation with organic polymers has been reported [19]. In this article was reported the intercalation of poly(ethylene glycol) (PEG) into the interlamellar spaces of kaolinite by displacing DMSO from a DMSO-kaolinite precursor mixed directly with a polymer melt. Powder X-ray diffraction (PXRD), FTIR spectroscopy and elemental analysis of intercalate revealed that intercalation could generate only partially DMSO substituted intercalates. In this example the polymer chains were arranged in flattened monolayers adopting preferentially a more relaxed trans conformation, causing an interlayer expansion of 0.4 nm.

From the above, nanostructured polymer/ceramic materials based on organoclays derived from smectites are a class of compounds where the intercalated
molecules are confined in a bidimensional space, acting only as a solvent to the exchangeable interlayer cations species. On the other hand, in kaolinite derivatives the intercalated molecules are directly bonded to the hydroxyls of the octahedral layer, providing an intimate molecular ensemble structure which can confer to these hybrid composites a set of unique and novel properties. In some cases synergistic effects can be envisaged when compared with only mechanically mixed polymer/clay compounds. Polymeric modified layered silicate nanocomposites (PLSN) are of considerable interest for designing high performance engineering materials with enhanced stiffness, strength, two dimensional stability, thermal and self-extinguishing characteristics [2].

Brazil is the third largest kaolin producer in the world with deposits in the Amazon basin greater than those already known in the rest of the world. Production capacity is being progressively increased and, in time, Brazil will probably emerge as the World’s leading producer of high purity Kaolinite. In view of the success of nanocomposites based on smectites, this contribution reports the preparation of polymer-layered aluminosilicate, intercalates of polyethylene oxide and bacterial poly-β-hydroxybutyrate in kaolinite clay previously intercalated with DMSO. Monomeric materials (with a small contamination of residual kaolinite), were characterized by powder X-ray diffraction (PXRD), FTIR and thermal analysis (simultaneous TG/DSC).

2. Experimental

The kaolinite sample employed in this work (PP-0559) was supplied by Petrobrás Research Center (CENPES-Rio de Janeiro, Brazil) and it comes from the Amazon basin (Rio Capim deposit). It was received as finely divided pale-yellow powder of great purity, high crystallinity level and contaminated with minor concentrations of structural titanium and iron as determined by chemical analysis (TiO₂ = 1.2 ± 0.2; Fe₂O₃ = 0.7 ± 0.1) and electronic paramagnetic resonance (EPR) [22]. No crystalline contaminants were detected by powder X-ray diffraction (XRD). The kaolinite used to prepare the hybrid composites was used without further purification.

Polyethylene oxide, (M = 10000 g/mol) was purchased from Aldrich and bacterial poly-β-hydroxybutyrate (M = 189,000 g/mol) was obtained from Marlborough Biopolymers (Billingham, UK), and purified by precipitation from N,N,N-dimethylformamide/diethyl ether.

Dimethylsulfoxide (DMSO), 1-methyl-2-pyrrolidone (NMP), N,N,N,N-dimethylformamide and diethyl ether were high-purity commercial Merck solvents used as received.

For powder x-ray diffraction analysis, the solid material was placed in the form of an oriented film in a neutral glass sample holder. The measurements were performed on a Rigaku diffractometer using Ni-filtered CuKα radiation (λ = 0.17902 nm) with a dwell time of 1° min⁻¹. All measurements were taken using a generator voltage of 40 kV and a current of 20 mA. Powder of metallic silicon was added to the samples and used as internal standard. To remove undesirable radiation between the sample and the detector a homemade graphite monochromator was used (LORXI, Physics Department-UFF).

The simultaneous TG-DSC measurements were performed on a Netzsch STA-409 EP series equipment under a static air atmosphere. Samples of about 20 mg were placed in alumina crucibles and heated between 30°C and 950°C at a rate of 5°C min⁻¹, using empty crucibles as reference.

FTIR spectra between 400 and 4000 cm⁻¹ were obtained on a Bomem Michelson MB 100 FTIR spectrometer using 50 averaged scans at 2 cm⁻¹ resolution. The solid samples were prepared as KBr pellets (ca. 3% by mass in KBr) while pure NMP was measured between two pellets of KBr.

Morphological study was carried out in a Philips XL30 scanning electron microscope operating at 30 kV. With this aim, nanocomposites and the pure kaolinite were suspended in water with manual stirring, deposited by casting directly in the copper sample holder and dried at room temperature for some hours. After that, they were sputtering coated with a thin gold film (nominal layer of 10 nm) to avoid charge buildups because of their low conductivity. No metallization effects over the morphology of these films have been observed.

2.1. Preparation of kaolinite-dimethylsulfoxide intercalate

The preparation of K-DMSO clay intercalate was conducted as follows: 9 g of kaolinite PP-0559 were mixed with 60 × 10⁻⁴ m² of DMSO and 5.5 × 10⁻⁴ m² of pure water and stirred to form a homogeneous suspension at 60°C. After 10 days the resulting material (K-DMSO) was separated by centrifugation at 4500 rpm for 3 minutes and dried in a drying oven at 50°C for 24 h to eliminate the excess of DMSO [2].

2.2. Preparation of kaolinite-polyethylene oxide intercalate

Immediately after drying and characterization, the K-DMSO intercalate was used as precursor to prepare polyethylene oxide intercalates conducted as follows: 2.5 g of PEO were mixed with 0.5 g of K-DMSO and ground in a agate vibrating mill (Fritsch-Analysette 3) for 30 minutes to obtain a finely divided powder. This reactive mixture was then transferred to a 50 × 10⁻⁶ m² reaction beaker and heated to fusion at 130°C for 4 days, under air. After that, the material was repeatedly washed with water, centrifuged and dried in a drying oven at 50°C for 48 h under air, to give a white powder.

2.3. Preparation of kaolinite-poly-3-hydroxybutyrate intercalate

K-DMSO intercalate was used as precursor to prepare poly-β-hydroxybutyrate intercalates conducted as follows: 0.8 g of PHB and 0.2 g of K-DMSO were mixed and ground in a agate vibrating mill (Fritsch-Analysette 3) for 30 minutes. This reactive mixture was then transferred to a 50 × 10⁻⁶ m² reaction beaker and heated to fusion at 180°C under air atmosphere.
for 5 days. After the reaction, the intercalate, K-PHB was repeatedly washed with 1-methyl-2-pyrrolidone and acetone and dried at 50°C for 24 h to give a slightly brown powder. In order to compare, the same polymer intercalate synthesis procedures were performed using only pure kaolinite. In this case no reaction was observed, which excludes the process of intercalation in absence of a precursor such as K-DMSO intercalate.

3. Results and discussion

3.1. Powder X-ray diffraction

The X-ray diffraction spectra of kaolinite (a), K-DMSO precursor (b), K-PEO (c) and K-PHB (d) are illustrated in Fig. 1. The interpretation of the X-ray reflections are summarized as follows: K1 and K2; D1, D2 and D3; P1, P2 and P3; H1, H2, and H3 represent the first, second and third basal reflections of the raw kaolinite, K-DMSO, K-PEO and K-PHB intercalation compound, respectively.

Characteristic maxima of raw kaolinite were observed at 2θ = 14.22° (very intense, sharp and narrow) and 2θ = 28.85° (very intense, sharp and narrow). The peak at 2θ = 14.22° corresponds to the basal spacing of K (0.716 nm).

After intercalation, as expected, we can observe that the X-ray diffraction pattern of the original kaolinite modifies dramatically. The peak at 2θ = 14.22° in the original K, assigned as the first basal peak is greatly shifted in intercalates to small reflection angles due to expansion produced by the presence of intercalated DMSO or polymer chains. X-ray spectra for PEO and PHB showed that the characteristic diffraction peaks of the two pure macromolecular compounds do not appear in the X-ray diffraction pattern of kaolinite intercalates, which excludes the presence of any crystalline polymeric phase in the composites.

<table>
<thead>
<tr>
<th>Phase Identification</th>
<th>IR (%)</th>
<th>d (nm)</th>
<th>Δd (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td></td>
<td>0.716</td>
<td></td>
</tr>
<tr>
<td>K-DMSO</td>
<td>83.5</td>
<td>1.121</td>
<td>0.404</td>
</tr>
<tr>
<td>K-PEO</td>
<td>78.9</td>
<td>1.116</td>
<td>0.399</td>
</tr>
<tr>
<td>K-PHB</td>
<td>77.3</td>
<td>1.170</td>
<td>0.455</td>
</tr>
</tbody>
</table>

The interlayer spacing (d) and the interlayer expansion (Δd) with respect to pure kaolinite calculated from the Powder X-ray diffraction data (Fig. 1) are summarized in Table 1. These results indicate that the confined polymer chains are arranged to give interlamellar flat monolayer ensembles such as previously reported to oligomeric poly(ethylene glycol) [19].

The intercalation rates (IR) given as percentage (Table 1) were calculated from the powder X-ray data, as described in the Equation 1 [3].

$$ IR = \left(\frac{I_{(001)}}{I_{(001)} + I_{(001)}} \right) \times 100\% $$ \hspace{1cm} (1)

where $I_{(001)}$ is the peak intensity observed for intercalate and $I_{(001)}$ is the peak intensity observed for kaolinite.

These results show that displacement of DMSO in K-DMSO precursor by PEO and PHB was totally accomplished to give composites, regenerating an additional concentration of pure kaolinite. The IR drops from 83.5% in K-DMSO to 78.9% in K-PEO and 77.3% for K-PHB, respectively.

3.2. Thermal methods (TG/DSC)

Differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TG) are two of the basic techniques for the characterization of organo-clay intercalates.

The K-DMSO intercalate shows a broad endothermic peak centered at 175°C, that corresponds to DMSO elimination [7]. The presence of this endothermic peak suggests that dimethylsulfoxide leaves the intercalate by simple volatilization without suffering any combustion reaction. An endothermic peak centered at 509°C corresponds to the dehydroxylation process of the kaolinite matrix. The same endothermic peak is observed at 529°C for the raw kaolinite. Considering that the residual kaolinite concentration was 16.5% and sample humility 0.7%, the loss of organic matter from the intercalate was of 8.8% (dry weight basis) in agreement with the theoretical value of the same 8.8% (0.4 DMSO for 1K). The total of residual mass measured by TG was of 79% (dry weight basis), which is very close to the theoretical value of 78.5% calculated from decomposition of kaolinite and intercalated dimethylsulfoxide.

Fig. 2 shows the typical TG/DSC curves for pure PEO (solid line) and intercalates K-PEO (dotted line).

The temperature values were determined as being the inflection points of the DSC curves. The TG/DSC curves obtained to K-PEO intercalate (dotted line)
shows an exothermic peak centered at 349°C due to polymer thermolysis. In this intercalate, kaolinite decomposition produces an endothermic peak at 515°C. Considering that the concentration of kaolinite was 21.1% and sample humidity 0.9%, the theoretical mass of PEO in the intercalate is 28.9% (dry weight basis) which is in good agreement with 28.8% obtained from thermogravimetric experiments. The total residual mass obtained from the TG curves for K-PEO intercalate was of 61.2% (dry weight basis), which is exactly the theoretical value of 61.2% calculated from decomposition of kaolinite and intercalated PEO.

It is interesting to note that in the DSC curve obtained for K-PEO, no peak was observed in the fusion region of PEO (around 73°C) (Fig. 2—dotted line curve) which indicates that organo clay composite totally free of crystalline polymer was obtained, as was also suggested from our x-ray diffraction and scanning electron microscopic measurements.

Fig. 3 shows the typical TG/DSC curves for pure PHB (solid line) and intercalates K-PHB (dotted line). The temperature values were determined as being the onset points of the DSC curves.

The TG/DSC curves obtained from the K-PHB nanocomposite (dotted line) reveal a broad strong exothermic peak centered at 309°C followed by a shoulder at 408°C, both of them can be attributed to PHB thermal decomposition. In this intercalate, kaolinite decomposition produces an endothermic peak at 500°C. Considering that the concentration of kaolinite was 27.7% and sample humidity 1.9% the thermal weight loss until 450°C was 15.5% in full agreement with the theoretical calculated value of 15.6%. The total residual mass measured by TG for K-PHB intercalate was 72.7% (dry weight basis), identical to the theoretical value (72.7%), calculated from individual decomposition of kaolinite and intercalated PHB, confirming the results obtained from X-ray diffraction. The solid line shows the TG/DSC curve of pure PHB for comparison purposes. In this curve one can observe two endothermic peaks centered at 169 and 179°C attributed to the polymer fusion followed by a strong endothermic peak centered at 276°C with a shoulder at 294°C and one small exothermic peak at 400°C, attributed to the decomposition process of the pure polymer.

In neither curve were observed peaks at 175°C that can be attributed to the elimination of DMSO, showing that the presence of DMSO in the nanocomposites is excluded.

Table II summarizes the results obtained from the TG/DSC measurements. From these results the polymer stoichiometric quantities on intercalates could be calculated: K(DMSO)_{0.40±0.02}, K(PHB)_{0.83±0.02} (related to \(-\text{OCH}_2\text{CH}_2\text{O}^–\) units), K(PHB)_{0.83±0.02} (related to \(-\text{OCH}(\text{CH}_3)\text{CH}_2\text{CO}^–\) units) and considering the kaolinite formula as \(\text{Al}_2\text{Si}_2\text{O}_5(\text{OH})_4\) without any other contaminations.

The thermal analysis results show that the lamellar intercalation of PEO and PHB in kaolinite considerably alters their degradation patterns. The polymer confined chains reveal an increased thermal-oxidative stability and the decomposition thresholds are shifted from 220°C to about 243°C and 276°C for PEO and PHB respectively. Thus, intercalation provides an efficient method to avoid direct contact of oxygen with the carbon chain preventing its degradation.

<table>
<thead>
<tr>
<th>Phase Identification</th>
<th>Humidity (%)</th>
<th>OM (%)</th>
<th>Residual (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>1.5</td>
<td>13.6</td>
<td>86.4</td>
</tr>
<tr>
<td>K-DMSO</td>
<td>0.7</td>
<td>8.8</td>
<td>91.2</td>
</tr>
<tr>
<td>K-PEO</td>
<td>0.9</td>
<td>28.9</td>
<td>71.1</td>
</tr>
<tr>
<td>K-PHB</td>
<td>1.9</td>
<td>15.5</td>
<td>84.5</td>
</tr>
</tbody>
</table>

*Related to the dry base.
3.3. FTIR spectroscopy

The kaolinite and polymer intercalates were characterized by FTIR spectroscopy. Figs 4 and 5 show the FTIR spectra of raw kaolinite (a), pure PEO (b) and K-PEO (Fig. 4) and raw kaolinite (a), pure PHB (b) and K-PHB (Fig. 5) obtained on a KBr pellet over the 4000–2500 cm$^{-1}$ (A) and 2000–400 cm$^{-1}$ region, respectively (B).

The presence of kaolinite in the nanocomposites can be evidenced by its absorption pattern in the 3500–ρ stretching region ($3694, 3668, 3650, 3619$ cm$^{-1}$) can be assigned to the kaolin OH-stretching. The 3694, 3619 cm$^{-1}$ doublet attributed for kaolin group in high crystalline ordered kaolinite [23] appears in K-PEO and K-PHB intercalates, as evidence that the intercalation process produces highly layered ordered composites. The presence of polymers in intercalates is evidenced by the characteristic C-H stretching bands of methylene groups over the 2600–3000 cm$^{-1}$ region. It is interesting to note in K-PEO and K-PHB spectra the absence of the peaks observed in K-DMSO precursor, which may be the total replacement of DMSO by the nanomolecular species.
The C-H stretching frequencies of PEO and PHB in kaolinite intercalates appear slightly higher (10–70 cm⁻¹) than those observed in pure polymer. These results are consistent with those reported previously [19] indicating that PEO chains have more restricted conformation motion when confined in kaolinite lamellar space.

As can be seen the intercalation process, conducted in our case under air atmosphere, can induce the formation of slightly PEO and PHB carbonylated chains. The oxidative process occurring during intercalation is clearly evidenced by the absorption pattern in the 1800–1500 cm⁻¹ range and seems to be more intense for PEO intercalates. Surprisingly, this feature of intercalation process conducted under air atmosphere was not observed by Tunney et al. [19], when working with the same intercalation conditions.

3.4. Morphological analysis
The morphology of pure kaolinite and K-PHB intercalate are illustrated in Fig. 6 (a and b), where scanning

![Figure 6](image)

Figure 6: SEM measurements from raw kaolinite (a and b) and K-PHB intercalated phase (c to e).
electron micrographs with magnification varying from 25000× to 50000× were taken from cast film surfaces. For pure kaolinite a typical microstructure is shown in Fig. 6a (25000×). As can be seen, kaolinite is composed of highly perfect small platelets (0.2 to 2 μm) of ca. 80 nm thickness, showing morphology with well defined hexagonal edges and corner angles (120°). Scanning electron microscopy of K-PHB nanocomposite (6c to e) revealed significant morphological differences between pure kaolinite and polymer intercalates. K-PHB crystallites had varying degrees of imperfection, showing rounded edges and corners. In some cases the hexagonal pattern morphology has totally collapsed. The comparative microscopic analysis of K and K-PHB (Fig. 6b and d), also reveals that the intercalation process provokes a severe modification of crystallite surface. The surface degradation in K-PHB intercalates can be explained by the fact that lateral crystalline expansion during the thermal intercalation process causes the kaolinite to break the layers, which finally induces the crystalline disruption in several submicroscopic size crystallites. It is important to note that morphology of intercalates depends not only on intercalation expansion but can be highly affected by external factors such as mechanical agitation and washing of compounds during preparation and purification steps. In spite of this, when observed with lower magnification (Fig. 6e), it is clearly seen that K-PHB can form a very homogeneous and compact film. It suggests that PHB can act not only as the intercalate molecule, but also as an efficient composite binder. The observed apparent rounded areas on the SEM micrographs in the intercalated kaolinite can be related to sample preparation. Although an extensive washing procedure was applied to the samples, the apparent softening of edge definition can be the result of the polymer used to cover them. Similar results have been observed in K-PEO intercalates.

4. Conclusions
Polymer clay hybrid composites based on polyhydroxybutyrate (PHB) and polyethylene oxide (PEO)—kaolinite were successfully prepared by a simple fusion technique under air atmosphere conditions. This method has shown to be useful to prepare hybrid composites with intercalation index of 78.9% and 77.3% for PEO and PHB respectively. The polymer-clay intercalates have been shown to be ordered arranged in flattened monolayers, such that the interlayer expansions determined by XRD were 0.399 nm and 0.453 nm for K-PEO and K-PHB respectively. The organo-kaolinite nanocomposites exhibit enhanced thermal stability as corroborated by TGA and DSC analysis. Investigations using scanning electron microscopy have demonstrated that intercalation processes provoke a severe degradation of kaolinite precursor morphology by a mechanism comprising initially of kaolinite interlayer expansion and surface fissure propagation. However, homogenous and compact polymer intercalate film could be obtained. This possible degradation can be also related to the sample preparation or measurement conditions. Nanomechanical properties studies of these nanocomposites are under way and will be the subject of a future publication.

Acknowledgements
The Physics Department at the Federal University of Paraná (UFPR) for the powder x-ray diffraction analysis and LAC-COPPEL for the Scanning Electron Microscopic measurements.

References
17. M. S. WANG and T. J. PINNAYAIA, ibid. 6 (1994) 468.
18. T. LAN and T. J. PINNAYAIA, ibid. 6 (1994) 2216.
22. Non published results.

Received 4 February and accepted 15 December 1999
"O dia há de vir em que a pesquisa detalhada irá revelar várias coisas que hoje parecem misteriosas [...] O dia há de vir em que nossos descendentes irão se chocar com nossa ignorância de tantas coisas que para eles são tão óbvias."

- Sêneca -

c. 4 a.C. – 65 d.C.